版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙教版九年级上册数学期末考试试题一、选择题。(每小题只有一个正确答案)1.从甲、乙、丙、丁四人中任选1名代表,甲被选中的可能性是()A. B. C. D.12.下列说法正确的是()A.对角线相等的四边形是矩形B.有两边及一角对应相等的两个三角形全等C.对角线互相垂直的矩形是正方形D.平分弦的直径垂直于弦3.下列函数中,二次函数是()A.y=8x2+1 B.y=8x+1 C.y= D.y=4.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为(
)A. B. C. D.5.下列说法中,正确的是()A.长度相等的两条弧是等弧B.优弧一定大于劣弧C.任意三角形都一定有外接圆D.不同的圆中不可能有相等的弦6.在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则等于()A. B. C. D.7.如图,一块边长为10cm的正方形木板ABCD,在水平桌面上绕点D按顺时针方向旋转到A′B′C′D′的位置时,顶点B从开始到结束所经过的路程长为(
)A.20cm B.cm C.10πcm D.πcm8.下列说法正确的是()A.长度相等的弧叫等弧B.平分弦的直径一定垂直于该弦C.三角形的外心是三条角平分线的交点D.不在同一直线上的三个点确定一个圆9.二次函数的图象如图,若一元二次方程有实数根,则的最大值为()A. B.3 C. D.9二、填空题10.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是______m.11.布袋中装有4个红球和3个黑球,它们除颜色外没有任何其他区别,小红从中随机摸出1个球,摸出红球的概率是________.12.一个扇形的半径为3cm,面积为,则此扇形的圆心角为______.13.如图,公园内有一个半径为20米的圆形草坪,,是圆上的点,为圆心,,从到只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路.通过计算可知,这些市民其实仅仅少走了__________步(假设1步为0.5米,结果保留整数).(参考数据:,取3.142)14.把抛物线y=x2+2x-3向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为_____________.15.如图,在中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形的面积之和(即阴影部分)为_____cm2(结果保留π)16.如图,在足球比赛场上,甲、乙两名队员互相配合向对方球门MN进攻,当甲带球冲到A点时,乙也跟随冲到B点.从数学角度看,此时甲是自己射门好,还是将球传给乙,让乙射门好?答________________.17.已知二次函数y=ax2+bx+c的部分图象如图所示,则关于x的方程ax2+bx+c=0的两个根的和为_____.18.已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是_____.19.如图,边长为4的正方形ABCD内接于⊙O,点E是上的一动点(不与点A、B重合),点F是上的一点,连接OE,OF,分别与交AB,BC于点G,H,且∠EOF=90°,连接GH,有下列结论:①;②△OGH是等腰直角三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为.其中正确的是____________.(把你认为正确结论的序号都填上)三、解答题20.如图,在破残的圆形残片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D,已知AB=8cm,CD=2cm.求破残的圆形残片的半径.21.如图,等腰梯形的周长为60,底角为30°,腰长为x,面积为y,试写出y与x的函数表达式.22.如图,在Rt△ABC中,∠A=90º,AB=6,BC=10,D是AC上一点,CD=5,DE⊥BC于E,求线段DE的长.23.如图,⊙O是△ABC的外接圆,C是优弧AB上一点,设∠OAB=α,∠C=β.(1)当β=36°时,求α的度数;(2)猜想α与β之间的关系,并给予证明.(3)若点C平分优弧AB,且BC2=3OA2,试求α的度数.24.布袋里有四个小球,球表面分别标有2、3、4、6四个数字,它们的材质、形状、大小完全相同.从中随机摸出一个小球记下数字为x,再从剩下的三个球中随机摸出一个球记下数字为y,点A的坐标为(x,y).运用画树状图或列表的方法,写出A点所有可能的坐标,并求出点A在反比例函数图象上的概率.25.如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在BC、CD上,若△ADE∽△CMN,求CM的长.26.小赵投资销售一种进价为每件20元的护眼台灯.销售过程中发现,当月内销售单价不变,则月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.(1)设小赵每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?并求出最大利润.(2)如果小赵想要每月获得的利润不低于2000元,那么如何制定销售单价才可以实现这一目标?27.如图点O是等边内一点,,∠ACD=∠BCO,OC=CD,(1)试说明:是等边三角形;(2)当时,试判断的形状,并说明理由;(3)当为多少度时,是等腰三角形参考答案1.A【解析】根据概率公式即可得到结论.【详解】从甲、乙、丙、丁四人中任选1名代表,甲被选中的可能性是.故选A.【点睛】本题考查了可能性的大小,解题的关键是掌握概率公式.2.C【解析】试题解析:A、对角线相等的平行四边形是菱形,故错误;B、有两边及夹角对应相等的两个三角形全等,错误;C、对角线互相垂直的矩形是正方形,正确;D、两条直径一定互相平分,但是不一定垂直,错误;故选C.3.A【分析】二次函数的定义:形如(a≠0)的函数叫二次函数.【详解】A、符合二次函数的定义,本选项正确;B、是一次函数;C、是反比例函数;D、不是二次函数,故选A【点睛】本题属于基础应用题,只需学生熟练掌握二次函数的定义,即可完成.4.D【分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.【详解】根据题意:从袋中任意摸出一个球,是白球的概率为==.故答案为D【点睛】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.C【解析】【分析】根据等弧的定义对A进行判断;根据劣弧和优弧的定义对B进行判断;根据确定圆的条件对C进行判断;根据弦的定义对D进行判断.【详解】A、长度相等的两条弧不一定是等弧,所以A选项错误;B、在同圆或等圆中,优弧一定大于劣弧,所以B选项错误;C、任意三角形都一定有外接圆,所以C选项正确;D、不同的圆中有相等的弦,所以D选项错误.故选:C.【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等)6.A【详解】试题分析:如图,∵四边形ABCD为平行四边形,∴ED∥BC,BC=AD,∴△DEF∽△BCF,∴,设ED=k,则AE=2k,BC=3k,∴==,故选A.考点:1.相似三角形的判定与性质;2.平行四边形的性质.7.D【解析】【分析】根据弧长公式可得.【详解】如图:连接DB,B′D,则点B的路径为圆心角为90度的扇形的弧长,l=cm故选D.【点睛】此题主要考查了正方形的性质和弧长公式,得出B点运动路线是解题关键.8.D【解析】试题分析:根据等弧的定义对A进行判断;根据垂径定理对B进行判断;根据三角形外心的定义对C进行判断;根据确定圆的条件对D进行判断.解:A、能够完全重合的弧叫等弧,所以A选项错误;B、平分弦(非直径)的直径一定垂直于该弦,所以B选项错误;C、三角形的外心是三边垂直平分线的交点,所以C选项错误;D、不在同一直线上的三个点确定一个圆,所以D选项正确.故选D.考点:圆的认识;垂径定理;确定圆的条件;三角形的外接圆与外心.9.B【分析】根据一元二次方程ax2+bx+m=0有实数根,可以理解为y=ax2+bx和y=-m有交点,结合图像可判断结果.【详解】解:一元二次方程ax2+bx+m=0有实数根,
可以理解为y=ax2+bx和y=-m有交点,
观察图像可见-m≥-3,
∴m≤3,
∴m的最大值为3.
故选B.【点睛】本题考查的是抛物线与x轴的交点,根据题意判断出a的符号及a、b的关系是解答此题的关键.10.10【分析】要求铅球推出的距离,实际上是求铅球的落脚点与坐标原点的距离,故可直接令,求出x的值,x的正值即为所求.【详解】在函数式中,令,得,解得,(舍去),∴铅球推出的距离是10m.【点睛】本题是二次函数的实际应用题,需要注意的是中3代表的含义是铅球在起始位置距离地面的高度;当时,x的正值代表的是铅球最终离原点的距离.11.【详解】∵有4个红球3个黑球,∴球的总数=4+3=7,∴随机摸出一个球,摸到红球的概率=.故答案为.12.40°.【详解】解:根据扇形的面积计算公式可得:=π,解得:n=40°,即圆心角的度数为40°.考点:扇形的面积计算.13.15【详解】【分析】过O作OC⊥AB于C,分别计算出弦AB的长和弧AB的长即可求解.【解答】过O作OC⊥AB于C,如图,∴AC=BC,∵∴∴∴∴又∵弧AB的长=米步.故答案为15.【点评】考查了弧长的计算,垂径定理的应用,熟记弧长公式是解题的关键.14.y=【解析】试题分析:根据题意y=x2+2x-3=(x+1)2-4向左平移3个单位,然后向下平移2个单位,得:y=(x+1+3)2-4-2=(x+4)2-6=x2+8x+10,即y=x2+8x+10.考点:1.二次函数的图像,2.配方法15..【分析】图中阴影部分的面积就是两个扇形的面积,圆A,B的半径为2cm,则根据扇形面积公式可得阴影面积.【详解】(cm2).故答案为.考点:1、扇形的面积公式;2、两圆相外切的性质.16.乙射门好【解析】试题解析:∵∠MBN=∠MCN,而∠MCN>∠A,∴∠MBN>∠A,∴从数学角度看,此时甲将球传给乙,让乙射门好.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.17.2【详解】解:根据函数的图像可知其对称轴为x=-=1,解得b=-2a,然后可知两根之和为x1+x2=-=2.故答案为:2【点睛】此题主要考查了二次函数的图像与一元二次方程的关系,解题关键是由函数的图像求得对称轴x=-,然后根据一元二次方程的根与系数的关系x1+x2=-求解即可.18.2≤m≤8【详解】设平移后的解析式为y=y=(x+1)2﹣m,将B点坐标代入,得4﹣m=2,解得m=2,将D点坐标代入,得9﹣m=1,解得m=8,y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是2≤m≤8.点睛:本题考查了二次函数图象与几何变换,利用了矩形性质和二次函数图象上点的坐标特征,平移的性质的应用,把B,D的坐标代入是解题关键.19.①②④【解析】试题分析:①如图1中,连接OB、OA.∵四边形ABCD是正方形,∴∠EOF=∠AOB=90°,∴∠AOE+∠BOE=∠BOF+∠BOE,∴∠AOE=∠BOF,∴.所以①正确;②如图1中,在△AOG和△BOH中,,∴△AOG≌△BOH;∴OG=OH,∵∠GOH=90°,∴△OGH是等腰直角三角形.所以②正确;③如图1中,∵△AOG≌△BOH,∴四边形OGBH的面积=△AOB的面积=正方形ABCD的面积,∴四边形OGBH的面积不发生变化.所以③错误;④∵△AOG≌△BOH,∴AG=BH,∴BG+BH=BG+AG=BC=4,设BG=x,则BH=4-x,则GH===,∴当x=2时GH最小,最小值为,∴△GBH周长的最小值为4+.所以④正确.故答案为:①②④.点睛:考查了圆的综合题,关键是熟练掌握全等三角形的判定和性质,相等的圆心角所对的弧相等,等腰直角三角形的判定,勾股定理,综合性较强,有一定的难度.20.破残的圆形残片的半径为5cm.【解析】【分析】设圆的半径为rcm,根据ABCD和已知条件求出AD=AB,在Rt△ADO中,利用勾股定理为等量关系列方程,求出半径即可.【详解】在直线CD上取圆心O,连接OA,设半径为rcm,∵弦AB的垂直平分线交弧AB于点C,交弦AB于点D,在Rt△ADO中,OA2=AD2+OD2,∴r2=42+(r-2)2,∴r=5答:破残的圆形残片的半径为5cm.【点睛】本题考查的是垂径定理和勾股定理的应用,垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.21.s=﹣x2+15x(0<x<60)【解析】【分析】作AE⊥BC,在Rt△ABE中,求出AE=AB=x,利用梯形的周长可得出AD+BC的值,代入梯形面积公式即可得出y与x的函数表达式.【详解】作AE⊥BC,在Rt△ABE中,∠B=30°,则AE=AB=x,∵四边形ABCD是等腰梯形,∴AD+BC=60-AB-CD=60-2x,∴S=(AD+BC)×AE=(60-2x)×x=-x2+15x(0<x<60).【点睛】本题考查了根据实际问题抽象二次函数关系式的知识,掌握梯形的面积公式及等腰梯形的性质是解答本题的关键.22.3【详解】试题分析:直接利用相似三角形的判定与性质得出的长.试题解析:∵∠C=∠C,∠A=∠DEC,∴△DEC∽△BAC,则解得:DE=3.点睛:两组角对应相等,两个三角形相似.23.(1)β=54°;(2)α与β之间的关系是α+β=90°;证明见解析;(3)α=30°.【解析】【分析】(1)连接OB,根据同弧所对的圆周角是圆心角的一半和等腰三角形的性质解答即可;(2)根据(1)的方法解答即可;(3)过O作OE⊥AC于E,连接OC,证明AE=OA,得到△ABC为正三角形,得到答案.【详解】(1)连接OB,则OA=OB,∴∠OAB=∠OBA,∵∠C=36°,∴∠AOB=72°,∵∠OAB=(180°﹣∠AOB)=54°,即β=54°;(2)α与β之间的关系是α+β=90°;证明:∵∠OBA=∠OAB=α,∴∠AOB=180°﹣2α,∵∠AOB=2∠β,∴180°﹣2α=2∠β,∴α+β=90°;(3)∵点C平分优弧AB,∴AC=BC,又∵BC2=3OA2,∴AC=BC=OA,过O作OE⊥AC于E,连接OC,由垂径定理可知AE=OA,∴∠AOE=60°,∠OAE=30°,∴∠ABC=60°,∴△ABC为正三角形,则α=∠CAB﹣∠CAO=30°.【点睛】本题考查的是三角形的外接圆、垂径定理和锐角三角函数的知识,综合性较强,需要学生灵活运用所学的知识,正确作出辅助线构造直角三角形进行解答.24.【详解】试题分析:先画树状图展示所有12种等可能的结果数,然后写出12个点的坐标;根据反比例函数图象上点的坐标特征可判断有两个点在函数图象上,然后根据概率公式求解.试题解析:依题意列表得:xy23462(2,3)(2,4)(2,6)3(3,2)(3,4)(3,6)4(4,2)(4,3)(4,6)6(6,2)(6,3)(6,4)由上表可得,点A的坐标共有12种结果,其中点A在反比例函数上的有4种:(2,6)、(3,4)、(4,3)、(6,2),∴点A在反比例函数上的概率为25.【详解】试题分析:∵正方形ABCD的边长为2,AE=EB,∴AE=×2=1,在Rt△ADE中,DE===,∵△ADE∽△CMN,∴=,即=,解得CM=.考点:相似三角形的性质;正方形的性质.51点评:本题考查了相似三角形对应边成比例的性质,正方形的性质,根据相似三角形对应顶点的字母放在对应位置上确定出对应边是解题的关键.26.(1)当销售单价定为35元时,每月获得的利润最大,最大利润为2250元;(2)如果小赵想要每月获得的利润不低于2000元,那么他的销售单价应不低于30元而不高于40元.【解析】试题分析:(1)根据总利润=单利润×销售量即可得到函数关系式,再根据二次函数的性质即得结果;(2)先求得利润为2000元时对应的销售单价,再根据二次函数的性质即可求得结果.(1)由题意得w=(x-20)·y=(x-20)·()当时,;(2)由题意得解得x1=30,x2=40即小赵想要每月获得2000元的利润,销售单价应定为30元或40元∵∴抛物线开口向下∴当30≤x≤40时,w≥2000答:(1)当销售单价定为35元时,每月可获得最大利润,且最大利润为2250元;(2)如果小赵想要每月获得的利润不低于2000元,那么他的销售单价应不低于30元而不高于40元.考点:二次函数的应用点评:解答本题的关键是读懂题意,找到等量关系,正确列出函数关系式,同时熟练掌握二次函数的最值的求法.27.(1)见解析;(2)△AOD是直角三角形,理由见解析;(3)110°或125°或140°时,△AOD是等腰三角形.【分析】(1)根据CO=CD,∠OCD=60°,然后根据等边三角形的判定方法即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年液压升高机项目投资价值分析报告
- 2024至2030年中国外开窗行业投资前景及策略咨询研究报告
- 2024至2030年木工打榫机项目投资价值分析报告
- 2024至2030年天线分析仪项目投资价值分析报告
- 2024至2030年商用条码打印机项目投资价值分析报告
- 2024至2030年中国专业摄影包行业投资前景及策略咨询研究报告
- 2024至2030年2-甲砜基乙醇项目投资价值分析报告
- 2024年高压座项目可行性研究报告
- 2024年迷你型电子保险箱项目可行性研究报告
- 2024年袖珍数字式超声测厚仪项目可行性研究报告
- 学校食堂从业人员食品安全知识培训记录三篇
- 正弦函数与余弦函数
- 第13课云与雾(教学课件)五年级科学上册
- 神经外科见习
- GB/T 2965-2023钛及钛合金棒材
- 《中华商业文化》第八章
- 介入科诊疗指南(主体)
- 领导干部的法治思维
- T-CSTM 01094-2023 材料基因工程 合金扩散偶制备元数据规范
- 食品中可能违法添加的非食用物质名单(全)
- 国开大学2023年01月11309《中国现代文学专题》期末考试答案
评论
0/150
提交评论