版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
GSM基站天线选型指导书修订记录用于说明对文档加附页或文档版本升级时对文档的改动情况,一般设计类文档用于说明对文档加附页或文档版本升级时对文档的改动情况,一般设计类文档目录1 天线概念 61.1 天线增益 61.2 天线方向图 71.3 极化方式 91.4 下倾(Downtilt) 91.5 电压驻波比(VSWR) 101.6 端口隔离度 101.7 功率容量 101.8 天线输入接口 101.9 无源互调(PIM) 111.10 天线尺寸和重量 111.11 风载荷 111.12 工作温度和湿度 121.13 雷电防护 121.14 三防能力 122 选型中的天线特性考虑 132.1 天线波束宽度与增益之间的关系 132.2 极化方式的对比 142.3 天线增益的选择 152.4 机械下倾与电子下倾的比较 162.5 预置下倾与零点填充的作用比较 172.6 倾角调整 182.7 波束宽窄的选择 192.8 地形匹配波束的选用 192.9 前后比的选择 202.10 天线尺寸的选用 202.11 天线阻抗 213 不同应用环境下的天线选型 223.1 市区基站天线选择 223.2 农村基站天线选择 233.3 郊区基站天线选择 243.4 公路覆盖基站天线选择 253.5 山区覆盖基站天线选择 263.6 近海覆盖基站天线选择 273.7 隧道覆盖基站天线选择 283.8 室内覆盖基站天线选择 29附录一:天线选型原则 30
GSM基站天线选型指导书关键词:基站天线选型方向图摘要:本文首先从网规角度阐述了天线的一些主要特性及在选择之中的考虑方法,然后具体介绍在各种不同应用环境下的天线选型原则及建议。最后给出了所有经公司认证过的天线的主要特性数据。缩略语清单:参考资料清单:参考资料清单名称作者编号
发布日期查阅地点或渠道
出版单位
天线概念在无线通信系统中,天线是收发信机与外界传播介质之间的接口。同一副天线既可以辐射又可以接收无线电波:发射时,把高频电流转换为电磁波;接收时把电磁波转换为高频电流。在选择GSM基站天线时,需要考虑其电气和机械性能。电气性能主要包括:工作频段、增益、极化方式、波瓣宽度、预置倾角、下倾方式、下倾角调整范围、前后抑制比、幅瓣抑制比、零点填充、回波损耗、功率容量、阻抗、三阶互调等。机械性能主要包括:尺寸、重量、天线输入接口、风载荷等。GSM基站所用天线类型按辐射方向来分主要有:全向天线、定向天线。按极化方式来区分主要有:垂直极化天线(也叫单极化天线)、交叉极化天线(也叫双极化天线)。上述两种极化方式都为线极化方式。圆极化和椭圆天线在GSM中一般不采用。按外形来区分主要有:鞭状天线、平板天线、帽形天线等等。在继续论述天线相关理论之前必须首先介绍各向同性(Isotropic)天线。各向同性天线是一种理论模型,实际中并不存在,它把天线假设为一个辐射点源,能量以该点为中心以电磁场的形式向四周均匀辐射,为一球面波。另外全向天线并不是没有方向性,它在水平方向为全向,但在垂直方向是有方向性的。它与各向同性天线是两个不同的概念。半波阵子是GSM基站主用天线的基本单元,半波阵子的优点是能量转换效率高。天线增益天线作为一种无源器件,其增益的概念与一般功率放大器增益的概念不同。功率放大器具有能量放大作用,但天线本身并没有把增加所辐射信号的能量,它只是通过天线阵子的组合并改变其馈电方式把能量集中到某一方向。增益是天线的重要指标之一,它表示天线在某一方向能量集中的能力。表示天线增益的单位通常有两个:dBi、dBd。两者之间的关系为:。dBi定义为实际的方向性天线(包括全向天线)相对于各向同性天线能量集中的相对能力,“i”即表示各向同性——Isotropic。dBd定义为实际的方向性天线(包括全向天线)相对于半波阵子天线能量集中的相对能力,“d”即表示偶极子——Dipole。两种增益单位的关系见下图:dBi与dBd的关系天线增益不但与阵子单元数量有关,还与水平半功率角和垂直半功率角有关。天线方向图天线辐射的电磁场在固定距离上随角坐标分布的图形,称为方向图。用辐射场强表示的称为场强方向图,用功率密度表示的称之功率方向图,用相位表示的称为相位方向图。天线方向图是空间立体图形,但是通常用两个互相垂直的主平面內的方向图来表示,称为平面方向图。一般叫作垂直方向图和水平方向图。就水平方向图而言,有全向天线与定向天线之分。而定向天线的水平方向图的形状也有很多种,如心型、8字形等。天线具有方向性本质上是通过阵子的排列以及各阵子馈电相位的变化来获得的,在原理上与光的干涉效应十分相似。因此会在某些方向上能量得到增强,而某些方向上能量被减弱,即形成一个个波瓣(或波束)和零点。能量最强的波瓣叫主瓣,上下次强的波瓣叫第一旁瓣,依次类推。对于定向天线,还存在后瓣。下面是一定向天线的水平及垂直方向图。定向天线水平与垂直方向图波束宽度也是天线的重要指标之一,它包括水平半功率角与垂直半功率角。分别定义为在水平方向或垂直方向相对于最大辐射方向功率下降一半(3dB)的两点之间的波束宽度。常用的基站天线水平半功率角有360°、210°、120°、90°、65°、60°、45°、33°等,垂直半功率角有6.5°、13°、25°、78°等。前后抑制比是指天线在主瓣方向与后瓣方向信号辐射强度之比,天线的后向180°±30°以内的副瓣电平与最大波束之差,用正值表示。一般天线的前后比在18~45dB之间。对于密集市区要积极采用前后比抑制大的天线。零点填充,基站天线垂直面内采用赋形波束设计时,为了使业务区内的辐射电平更均匀,下副瓣第一零点需要填充,不能有明显的零深。高增益天线由于其垂直半功率角较窄,尤其需要采用零点填充技术来有效改善近处覆盖。通常零深相对于主波束大于-26dB即表示天线有零点填充,有的供应商采用百分比来表示,如某天线零点填充为10%,这两种表示方法的关系为:YdB=20log(X%/100%)如:零点填充10%,即X=10;用dB表示:Y=20log(10%/100%)=-20dB上副瓣抑制,对于小区制蜂窝系统,为了提高频率复用效率,减少对邻区的同频干扰,基站天线波束赋形时应尽可能降低那些瞄准干扰区的副瓣,提高D/U值,上第一副瓣电平应小于-18dB,对于大区制基站天线无这一要求。极化方式极化是描述电磁波场强矢量空间指向的一个辐射特性,当没有特别说明时,通常以电场矢量的空间指向作为电磁波的极化方向,而且是指在该天线的最大辐射方向上的电场矢量来说的。电场矢量在空间的取向在任何时间都保持不变的电磁波叫直线极化波,有时以地面作参考,将电场矢量方向与地面平行的波叫水平极化波,与地面垂直的波叫垂直极化波。电场矢量在空间的取向有的时候并不固定,电场失量端点描绘的轨迹是圆,称圆极化波;若轨迹是椭圆,称之为椭圆极化波,椭圆极化波和圆极化波都有旋相性。不同频段的电磁波适合采用不同的极化方式进行传播,移动通信系统通常采用垂直极化,而广播系统通常采用水平极化,椭圆极化通常用于卫星通信。GSM天线的极化方式有单极化天线、双极化天线两种,其本质都是线极化方式。双极化天线利用极化分集来减少移动通信系统中多径衰落的影响,提高基站接收信号质量的,通常有0°/90°、45°/-45°两种。对于GSM频段,水平极化波的传播效果不如垂直极化,因此目前很少采用0°/90°的交叉极化天线。下倾(Downtilt) 天线下倾是常用的一种增强主服务区信号电平,减小对其他小区干扰的一种重要手段。通常天线的下倾方式有机械下倾、预制电下倾和可调电下倾(电调天线)三种方式。机械下倾是通过调节天线支架将天线压低到相应位置来设置下倾角;而电下倾是通过改变天线振子的相位来控制下倾角,预制电下倾天线的下倾角出厂后不可调整,可调电下倾天线则没有这种限制。可调电下顷分为远端可调电下顷(RET)和手动可调电下顷(MET)两种,对于RET,基站侧需要支持该种方式的软件,目前我司BTS3012基站支持RET,而原老基站BTS312则不支持。当然在采用电下倾角的同时也可以结合机械下倾一起进行。电压驻波比(VSWR)VSWR在移动通信蜂窝系统的基站天线中,其最大值应小于或等于1.5:1。若表示天线的输入阻抗,为天线的标称特性阻抗,则反射系数为,其中为50欧姆。也可以用回波损耗表示端口的匹配特性,,VSWR=1.5:1时,R.L.=13.98dB。天线输入阻抗与特性阻抗不一致时,产生的反射波和入射波在馈线上叠加形成驻波,其相邻电压最大值和最小值之比就是电压驻波比。电压驻波比过大,将缩短通信距离,而且反射功率将返回发射机功放部分,容易烧坏功放管,影响通信系统正常工作。端口隔离度对于多端口天线,如双极化天线、双频段双极化天线,收发共用时端口之间的隔离度应大于30dB。功率容量指平均功率容量,天线包括匹配、平衡、移相等其它耦合装置,其所承受的功率是有限的,考虑到基站天线的实际最大输入功率(单载波功率为20W),若天线的一个端口最多输入六个载波,则天线的输入功率为120W,因此天线的单端口功率容量应大于200W(环境温度为65℃时),在计算基站在天线口总的功率容量时,需要用载频输出功率减去合路损耗和馈线损耗,然后在乘以总的载频数得出的值,而不是简单的载频输出功率相加。天线输入接口为了改善无源交调及射频连接的可靠性,基站天线的输入接口采用7/16DIN-Female,在天线使用前,端口上应有保护盖,以免生成氧化物或进入杂质。对于单频单集化天线,只有一个输入端口;对于单频双集化天线,总共有两个输入端口,分别为+/-45度端口;对于双频双集化天线有两种端口方式,分别为四端口和两端口,其中四端口分别为900M+/-45度端口和1800M+/-45度端口;对于两端口,900M/1800M+45度和900M/1800M-45度两个端口,如果选用两端口的双频双集化天线,可以节省一副馈线,但是必须在机顶端增加一个双频合路器(四进两出双频合路器)。无源互调(PIM)所谓无源互调特性是指接头,馈线,天线,滤波器等无源部件工作在多个载频的大功率信号条件下由于部件本身存在非线性而引起的互调效应。通常都认为无源部件是线性的,但是在大功率条件下无源部件都不同程度地存在一定的非线性,这种非线性主要是由以下因素引起的:不同材料的金属的接触;相同材料的接触表面不光滑;连接处不紧密;存在磁性物质等。互调产物的存在会对通信系统产生干扰,特别是落在接收带内的互调产物将对系统的接收性能产生严重影响,因此在GSM系统中对接头,电缆,天线等无源部件的互调特性都有严格的要求。我们选用的厂家的接头的无源互调指标可达到-150dBc,电缆的无源互调指标可达到-170dBc,天线的无源互调指标可达到-150dBc。天线尺寸和重量为了便于天线储存、运输、安装及安全,在满足各项电气指标情况下,天线的外形尺寸应尽可能小,重量尽可能轻。目前运营商对天线尺寸、重量、外观上的要求越来越高,因此在选择天线时,不但要关心其技术性能指标,还应关注这些非技术因素。一般市区基站天线应该选择重量轻、尺寸小、外形美观的天线,郊区、乡镇天线一般无此要求。风载荷基站天线通常安装在高楼及铁塔上,尤其在沿海地区,常年风速较大,要求天线在36m/s时正常工作,在55m/s时不破坏。天线本身通常能够承受强风,在风力较强的地区,天线通常是由于铁塔、抱杆等原因而遭到损坏。因此在这些地区,应选择表面积小的天线。工作温度和湿度基站天线应在环境温度-40℃-+65℃范围内正常工作。基站天线应在环境相对湿度0-100%范围内正常工作。雷电防护基站天线所有射频输入端口均要求直流直接接地。三防能力基站天线必须具备三防能力,即:防潮、防盐雾、防霉菌。对于基站全向天线必须允许天线倒置安装,同时满足三防要求。
选型中的天线特性考虑天线波束宽度与增益之间的关系天线是一种能量集中的装置,在某个方向辐射的增强意味着其他方向辐射的减弱。通常可以通过水平面波瓣宽度的缩减来增强某个方向的辐射强度以提高天线增益。在天线增益一定的情况下,天线的水平半功率角与垂直半功率角成反比,其关系可以表示为:其中, Ga为天线增益,单位:dBi; 为垂直半功率角,单位:度; 为水平半功率角,单位:度。根据上述公式,当我们已知某一天线的增益和水平半功率角时,可以估算出其垂直半功率角。例如:某一全向天线,增益11dBi,水平半功率角360°,其垂直半功率角为:°由于设计和制造工艺上的差异,实际全向天线的垂直半功率角往往比上述计算结果要小。两者差别越小,说明天线设计得越好。天线增益、垂直半功率角、水平半功率角三者的关系如下图所示:天线增益与半功率角的关系由此可知,当天线增益较小时,天线的垂直半功率角和水平半功率角通常较大;而当天线增益较高时,天线的垂直半功率角和水平半功率角通常较小。另外,天线增益取决于阵子的数量。阵子越多,增益越高,天线的孔径(天线有效接收面积)也越大。对于全向天线,增益增加3dB,天线长度增加一倍,因此全向天线通常增益不会超过11dBi,此时天线长度约3米。当天线增益一定时,天线的水平半功率角与垂直半功率角成反比。极化方式的对比垂直单极化天线与双极化天线的比较:从发射的角度来看,由于垂直与地面的手机更容易与垂直极化信号匹配,因此垂直单极化天线会比其他非垂直极化天线的覆盖效果要好一些。特别是在开阔的山区和平原农村就更明显。实验证明,在开阔地区的山区或平原农村,这种天线的覆盖效果比双极化(±45°)天线更好。但在市区由于建筑物林立,建筑物内外的金属体很容易使极化发生旋转,因此无论是单极化还是±45°双极化天线在覆盖能力上没有多大区别。从接收的角度来看,由于单极化天线要用两根天线才能实现分集接收,而双极化天线只要一根就可以实现分集接收,因此单极化天线需要更多的安装空间,且在以后的维护工作方面要比双极化天线要大。至于空间分集与极化分集增益差别不大,一般空间分集增益在3.5dB左右。从天线尺寸方面来说由于双极化天线中不同极化方向的振子即使交叠在一起也可保证有足够的隔离度,因此双极化天线的尺寸不会比单极化天线更大。+45°/-45°双极化天线与0°/90°双极化天线的比较:+45°/-45°方式下的所有天线子系统都可用作发射信号。而0°/90°双极化天线一般只采用垂直极化振子发射信号。经验表明若用水平极化天线发射信号要比垂直极化天线发射信号低得多。在理想的自由空间中(假定手机接收天线是垂直极化),采用垂直极化振子进行发射时要比采用45°/-45°发射时的覆盖能力要强3dB左右。但在实际应用环境中,考虑到多径传播的存在,在接收点,各种多径信号经统计平均,上述差别基本消失,各种实验也证明了此结论的正确。但在空旷平坦的平原,上述差异或许还存在,但具体是多少,还有待实验证明,可能会有1-2dB的差异。综上所述,在实际应用中,两种双极化方式的差别不大,目前市场上正负45度正交极化天线比较常见。天线增益的选择GSM基站全向天线增益范围一般在:2dBi~14dBi。规格有:2dBi、9dBi、11dBi、12dBi、14dBi等。而定向天线的增益范围一般在:3dBi~22dBi。规格有:3dBi、8.5dBi、10dBi、13dBi、15dBi、15.5dBi、17dBi、18dBi、21dBi、22dBi等。低增益天线,天线增益小覆盖范围及干扰可以得到较好的控制。通常与微基站、微蜂窝配合使用,主要用于室内覆盖及室外的补点(补盲),如大厦的背后,新的生活小区,新的专业市场等。这种天线的尺寸较小,便于安装,如在隧道口内侧可以采用八木天线等。这种天线价格较便宜。中等增益天线,在城区适合使用中等增益,一方面这种增益天线的体积和尺寸比较适合城区使用;另一方面,在较短的覆盖半径内由于垂直面波束宽度较大使信号更加均匀。中等增益天线在相邻扇区方向比高增益天线覆盖的信号强度更加合理。在建设初期,覆盖半径较大时(如1-1.5Km),可以采用高增益(17-18dBi)定向天线。高增益天线,在进行广覆盖时通常采用此种天线。用于高速公路、铁路、隧道、狭长地形广覆盖。这种天线的波瓣宽度较窄,零点较深,因此天线挂高较高时要注意选用采用了零点填充或预置电子下倾的天线来避免覆盖近端的零深效应。另外这种天线由于振子数量较多故而体积一般较大,安装时应注意可安装性,如有的隧道口可能就不宜安装这种天线。另外要注意风载荷。在沿海风大的地区更要注意。这种天线的成本相对也较高。机械下倾与电子下倾的比较天线波束下倾通常有三种方法:机械下倾、电子下倾(也叫预置倾角)、电调天线(也叫可调电子下倾)。电调天线在调整天线下倾角度过程中,天线本身不动,是通过电信号调整天线振子的相位,改变合成分量场强强度,使天线辐射能量偏离原来的零度方向。天线每个方向的场强强度同时增大或减小,从而保证了在改变倾角后,天线方向图形状变化不大,水平半功率宽度与下倾角的大小无关。而机械天线在调整天线下倾角度时,天线本身要动,需要通过调整天线背面支架的位置,改变天线的倾角。倾角较大时,虽然天线主瓣方向的覆盖距离明显变化,但与天线主瓣垂直的方向的信号没有几乎改变,所以天线方向图严重变形,水平半功率角随着下倾角的增大而增大。预置倾角天线与电调天线原理基本相似,只是其倾角是固定不能调整的(但仍可以通过机械下倾方法调整)。电调天线的优点是:在下倾角度很大时,天线主瓣方向覆盖距离明显缩短,天线方向图形状变化不大,能够降低呼损,减小干扰。而机械下倾会使方向图变形,倾角越大变形越严重,干扰不容易得到控制。下面给出这两种不同的调整方式下天线水平方向图的变化情况。当然这与天线垂直半功率角有关。图4 不同下倾角时水平方向图的变化情况另外电调下倾与机械下倾在对后瓣的影响方面也不同,电调下倾会使得后瓣的影响得到进一步的控制,而机械下调可能会使后瓣的影响扩大。如下图所示:图5 不同的下倾方式对后瓣的不同影响机械下倾较大时,该天线辐射信号会通过后瓣传播到背面方向的高层建筑物内,从而导致意外的干扰。除此以外,在进行网络优化、管理和维护时,若需要调整天线下倾角度,使用电调天线时整个系统不需要关机,这样就可利用移动通信专用测试设备,监测天线倾角调整,保证天线下倾角度为最佳值。电调天线调整倾角的步进度数为0.1度,而机械天线调整倾角的步进度数为1度,因此电调天线的精度高,效果好。电调天线安装好后,在调整天线倾角时,维护人员不必爬到天线安放处,可以在地面调整天线下倾角度,还可以对高山上、边远地区的基站天线实行远程监控调整。而调整机械天线下倾角度时,要关闭该小区,不能在调整天线倾角的同时进行监测,机械天线的下倾角度是通过计算机模拟分析软件计算的理论值,同实际最佳下倾角度有一定的偏差。另外机械天线调整天线下倾角度非常麻烦,一般需要维护人员在夜间爬到天线安放处调整,而且有些天线安装后,再进行调整非常困难,如山顶、特殊楼房处。电调天线的缺点是价格非常昂贵。对于总包合同,而且用户没有强烈要求的地方,尽量采用机械下顷方式的天线,降低合同成本。预制下倾天线技术成熟可靠,价格也比较合理,建议在一些频繁调整及对覆盖控制要求高的场合优先选用预置下倾天线,但要根据覆盖需要选择合适倾角大小的预制下倾天线。预置下倾与零点填充的作用比较预置下倾与零点填充都可以用来解决由于天线零点所带来的塔下黑问题。但二者又有所区别,预置下倾的采用会缩小主瓣的覆盖范围,但在下倾角普遍较大的场合可以增大天线下倾角的可调范围。而零点填充作为一种赋形技术,可以获得较好的方向图,此时上副瓣一般得到抑制,因此这种天线不会对别的方面造成什么影响,当然它不能增加天线下倾角的可调范围。某种天线可能同时具备这两种特性,也可能只具备其中的一种,也可以是一种都没有。这在规划阶段天线选型时要结合具体的覆盖要求进行选择。很多场合下主要天线的高度不是太高(超过50米),即使不采用预置下倾及零点填充技术,天线的零深效应也是不明显的。因此这两种技术在广覆盖时用得更多,而这时覆盖范围的增加是更为重要的,天线下倾角的调整范围是次要的,因此建议多采用零点填充天线。而在市区等需要更大下倾角调整范围的场合,天线的零深效应又不明显,可以不选用零点填充天线,而是着眼于较大下倾角调整范围建议选用预置下倾的天线。倾角调整对于全向天线来说,不可以调整下倾角,但可选择预置倾角天线。对定向天线来说,在不同的应用场合,对下倾角的调整范围有不同的要求。对覆盖范围控制要求较严的市区要求下倾角的调整范围较大,一般在X-18°,X可以为0°,也可以是一固定的预置电下倾如3°。而有些机械下倾天线下倾角最大只能打到12°,这对干扰控制是不利的,特别是在紧密复用的场合下。因此要根据规划区域的实际情况来选择合理的下倾范围。而在干扰问题不是主要矛盾的场合,对下倾角的调整范围要求就很小,如在进行广覆盖时,有时就根本不需要考虑下倾角。我司选择的高增益赋形全向天线的最大增益为12dBi,该类型天线的零点填充水平为25%(即第一零点的深度为-12dB)、3度固定电下倾。由于存在3度下倾,因此在0度方向的增益与普通高增益全向天线相同(10.5-11dBi)。这种天线用于山区、丘陵覆盖比较理想,可以有效解决由于天线挂高太高而出现的塔下黑现象。由于赋形天线只对天线下方第一个零点进行填充,因此如果天线挂高过高,该天线也将无能为力。因此建议需要有效覆盖的建筑物距离天线的径向距离R与天线挂高H满足以下关系:H<R×tg18°表一:径向距离与天线挂高的关系R(m)H(m)6020100301504820065中等增益的赋形和普通全向天线更适合用于周遍环山(山比基站天线高出较多,天线对山梁的仰角大于4度)的不太发达的乡镇,由于其垂直面的波束较宽,因此指向山上的信号较强。但要注意避免时间色散的影响。波束宽窄的选择波束宽窄的选择包括水平波瓣与垂直半功率角的选择,而这两者又是互相关联的。选择的主要依据是具体的覆盖要求及干扰的控制。在市区水平半功率角不宜大于65°,主要着眼点是从干扰控制出发的,90°及90°以上的天线由于其覆盖范围过大而不利于频率复用及干扰的控制。而在郊区频率计划一般较为宽裕,这时干扰不是主要问题,可以选择水平半功率角为90°以上的天线以增强对周边地区的覆盖。在天线增益及水平半功率角选定后,垂直半功率角一般来说也是确定的。但有时也会从垂直方向的覆盖要求进行考虑,如基站建在建在山上,而要覆盖的地区在山下的地方,就宜选用垂直面半功率波束很宽的天线进行覆盖,垂直面波束宽度在20°左右的天线。垂直面波束的选择确决于天线挂高,基站密度,和频率采用的方式。对于频率规划采用1*3和1*1跳频的网络,我们还需要关注覆盖范围内各个基站的海拔落差情况,例如丘陵地区或山地,为了有效的控制网络的整体干扰水平,建议使用垂直波瓣较窄的天线(一般典型值6-9度)。垂直波瓣较窄,势必该天线的增益就会较高(水平波瓣一定,城区我们都默认为65度),如17/18dbi,而在密集城区需要特别控制越区覆盖、频率干扰,因此除天线挂高合理以外,常大量采用电调天线。垂直波瓣越窄,一般意味着天线增益越高,定向性越好,但同时天线的零深效应会越明显,注意采取预置下倾或零点填充技术来解决零点问题。垂直波瓣越窄,也意味着天线越长,重量越重,这时就要考虑可安装性问题,同时价格也会越贵。一般双极化天线水平面内的最大波束宽度不大于90度。地形匹配波束的选用在有些应用场合下基站周围需要覆盖的区域与不需要覆盖的区域可以很明显的地区分开来。那么在这些地方可以选用与该处地形匹配的波束进行覆盖。天线主波束水平方向图形状的选择主要是从基站周边的覆盖要求来定的,结合基站的位置,周边覆盖地区的分布及形状来选定,即天线波束形状与需覆盖的地形相匹配。常见地形匹配波束的有八字形、心形等,这些天线都是由全向天线改造而成。八字形全向变形天线是由普通全向天线与对称两根辅助反射金属管组成,反射金属管的作用是通过耦合改变全向天线水平面的方向图,水平方向图呈“∞”形。这种天线对于一些纯公路覆盖很重要。纯公路覆盖是指无人居住的山区、沙漠的重要等级公路覆盖,话务量少,为减少基站数量,降低建设成本,通常采用O2以下站型,因此覆盖距离应尽量远。象这种无线覆盖区域,采用地形匹配天线是最理想的。而八字形的变形全向天线可以增加需要覆盖方向的增益(在最大方向上增益约增加3dB),减少公路两旁无用户区的覆盖能量。这种天线的站址选择很重要,公路的延伸方向应与天线方向图匹配。这种天线实际上就是对于纯粹的公路覆盖或其它无建筑物覆盖可以不考虑塔下黑,因为信号进入车内的衰减比进入建筑物内的衰减小得多。在农村地区,许多小村镇建在公路的一侧,在做公路覆盖时可以兼顾这些村镇的覆盖,采用以下变形全向天线(心形方向图),在公路和村镇方向的天线增益可以提高到13-15dBi,可以使村镇和公路覆盖更有效。前后比的选择一般天线的前后比在22dB左右,但有时在规划及优化时这一前后比往往不能满足要求,而需要具有更高前后比的天线。在频率紧密复用的场合下,后瓣过大容易产生邻频(甚至同频)干扰,从而影响网络质量。前后比大于35dB天线为高前后比天线,增益、波束宽度的规格与普通定向天线一样。高前后比天线采用对数周期偶极子单元组阵而成,因此从外形上看,这种天线比较厚,但比较窄。两副高前后比天线的价格比一副相同增益和半功率角的双极化天线高出35%。但为了提高网络质量,还是有必要推荐使用这种天线。而在某些应用条件下,天线的前后比不宜太高,如在进行高速公路覆盖时,基本上都是快速移动用户,基站采用两小区进行覆盖,若天线的前后比太低的话由于两小区的交叠深度很小会不利于切换的正常进行。天线尺寸的选用天线尺寸的选用主要是从可安装的角度来考虑,在某些安装条件受限的区域,如铁塔空间有限、铁塔承重有限和铁塔风载荷有限等,需要选择尺寸小的天线。首先天线的尺寸与各个厂家的工艺水平有关,由此造成在其他各种指标都相同的条件下不同厂家的天线尺寸不同的情况。其次天线的尺寸主要与天线的增益有关,增益越大的天线所需的振子数量越多,一般就表现在天线的长度的增加上。天线阻抗合路器的输入阻抗为50欧姆,要减小天线驻波比,天线的特性阻抗要与其匹配,即等于50欧姆。一般GSM天线的特性阻抗均满足此要求,但在选择、认证新天线时需要关注该项指标。
不同应用环境下的天线选型在移动通信网络中,天线的选择是一个很重要的部分,应根据网络的覆盖要求、话务量、干扰和网络服务质量等实际情况来选择天线。天线选择得当,可以改善覆盖效果,减少干扰,改善服务质量。根据地形或话务量的分布可以把天线使用的环境分为8种类型:市区(高楼多,话务大)、郊区(楼房较矮,开阔)、农村(话务少)、公路(带状覆盖)、山区(或丘陵,用户稀疏)、近海(覆盖极远,用户少)、隧道、大楼室内。市区基站天线选择应用环境特点:基站分布较密,要求单基站覆盖范围小,希望尽量减少越区覆盖的现象,减少基站之间的干扰,提高频率复用率。天线选用原则:1.极化方式选择:由于市区基站站址选择困难,天线安装空间受限,建议选用双极化天线;2.方向图的选择:在市区主要考虑提高频率复用度,因此一般选用定向天线;3.半功率波束宽度的选择:为了能更好地控制小区的覆盖范围来抑制干扰,市区天线水平半功率波束宽度选60~65°。在天线增益及水平半功率角度选定后,垂直半功率角也就定了;4.天线增益的选择:由于市区基站一般不要求大范围的覆盖距离,因此建议选用中等增益的天线。同时天线的体积和重量可以变小,有利于安装和降低成本。根据目前天线型号,建议市区天线增益视基站疏密程度及城区建筑物结构等选用15-18dBi增益的天线。若市区内用作补盲的微蜂窝天线增益可选择更低的天线如10-12dBi的天线;5.预置下倾角及零点填充的选择:市区天线一般来都要设置一定的下倾角,因此为增大以后的下倾角调整范围,可以选择具有固定电下倾角的天线(建议选3-6°)。由于市区基站覆盖距离较小,零点填充特性可以不作要求;6.下倾方式选择:由于市区的天线倾角调整相对频繁,且有的天线需要设置较大的倾角,而机械下倾不利于干扰控制,所以在可能的情况下建议选用预置下倾天线。7.下倾角调整范围选择:由于在市区出于干扰控制的原因,需要将天线的下倾角调得较大,一般来说电调天线在下倾角的调整范围方面是不会有问题的。但是在选择机械下倾的天线时,建议选择下倾角调整范围更大的天线,最大下倾角要求不小于14°;8.在城市内,为了提高频率复用率,减小越区干扰,有时需要设置很大的下倾角,而当下倾角的设置超过了垂直面半功率波束宽度的一半时,需要考虑上副瓣的影响。所以建议在城区选择第一上副瓣抑制的赋形技术天线,但是这种天线通常无固定电下倾角。9.目前很多网络使用双频网进行覆盖,在城市内需要选择双频双集化天线,由于双频天线价格昂贵,所以需要尽力引导客户使用单频天线,单频天线比双频天线的优点是在网络优化时,可以根据需要随意的调节各个频段天线的方向角和下顷角。如果无法引导客户采用单频天线,在使用双频天线时需要注意:双频天线有两端口和四端口之分,对于四端口,只要按照正常的900M和1800M的馈线发货即可;对于双端口,由于双端口节省一副馈线,所以发馈线时需要减少一副馈线,同时需要在机顶增加一个双频合路器。推荐:半功率波束宽度65°/中等增益/带固定电下倾角+机械下倾的双极化天线。具体的选择的天线规格,请参考《天线选型原则》。农村基站天线选择应用环境特点:基站分布稀疏,话务量较小,覆盖要求广。有的地方周围只有一个基站,覆盖成为最为关注的对象,这时应结合基站周围需覆盖的区域来考虑天线的选型。一般情况下是希望在需要覆盖的地方能通过天线选型来得到更好的覆盖。天线选用原则:1、极化方式选择:从发射信号的角度,在较为空旷地方采用垂直极化天线比采用其他极化天线效果更好。从接收的角度,在空旷的地方由于信号的反射较少,信号的极化方向改变不大,采用双极化天线进行极化分集接收时,分集增益不如空间分集。所以建议在农村建议选用垂直单极化天线。2、方向图选择:如果要求基站覆盖周围的区域,且没有明显的方向性,基站周围话务分布比较分散,此时建议采用全向基站覆盖。需要特别指出的是:这里的广覆盖并不是指覆盖距离远,而是指覆盖的面积大而且没有明显的方向性。同时需要注意的是:全向基站由于增益小,覆盖距离不如定向基站远。同时全向天线在安装时要注意塔体对覆盖的影响,并且天线一定要与地平面保持垂直,具体要求见《全向天线安装规范》。如果局方对基站的覆盖距离有更远的覆盖要求,则需要用定向天线来实现。一般情况下,应当采用水平面半波束宽度为90°、105°、120°的定向天线;在某些基站周围需要覆盖的区域呈现很明显的形状,可选择地形匹配波束天线进行覆盖;3、天线增益的选择:视覆盖要求选择天线增益,建议在农村地区选择较高增益(16-18dBi)的定向天线或9-11dBi的全向天线;4、预置下倾角及零点填充的选择:由于预置下倾角会影响到基站的覆盖能力,所以在农村这种以覆盖为主的地方建议选用不带预置下倾角的天线。但天线挂高在50米以上且近端有覆盖要求时,可以优先选用零点填充(大于15%)的天线来避免塔下黑问题;5、下倾方式的选择:在农村地区对天线的下倾调整不多,其下倾角的调整范围及特性要求不高,建议选用价格较便宜的机械下倾天线;对于定向站型推荐选择:半功率波束宽度90°、105°/中、高增益/单极化空间分集,或90°双极化天线,主要采用机械下倾角/零点填充大于15%。对于全向站型推荐:零点填充的天线,若覆盖距离不要求很远,可以采用电下倾(3°或5°)。天线相对主要覆盖区挂高不大于50m时,可以使用普通天线。另外,对全向站还可以考虑双发天线配置以减小塔体对覆盖的影响。必须通过功分器把发射信号分配到两个天线上。具体的选择的天线规格,请参考《天线选型原则》。郊区基站天线选择应用环境特点:郊区的应用环境介于城区环境与农村环境之间,有的地方可能更接近城区,基站数量不少,频率复用较为紧密,这时覆盖与干扰控制在天线选型时都要考虑。而有的地方可能更接近农村地方,覆盖成为重要因素。因此在天线选型方面可以视实际情况参考城区及农村的天线选型原则。在郊区,情况差别比较大。可以根据需要的覆盖面积来估计大概需要的天线类型。一般可遵循以下几个基本原则:1、根据情况选择水平面半功率波束宽度为65°的天线或选择半功率波束宽度为90°的天线。当周围的基站比较少时,应该优先采用水平面半功率波束宽度为90°的天线。若周围基站分布很密,则其天线选择原则参考城区基站的天线选择。若周围基站较很少,且将来扩容潜力不大,则可参考农村的天线选择原则;2、考虑到将来的平滑升级,所以一般不建议采用全向站型;3、是否采用预置下倾角应根据具体情况来定。即使采用下倾角,一般下倾角也比较小。推荐选择:半功率波束宽度90°/中、高增益的天线,可以用电调下倾角,也可以是机械下倾角。具体的选择的天线规格,请参考《天线选型原则》。公路覆盖基站天线选择应用环境特点:该应用环境下话务量低、用户高速移动、此时重点解决的是覆盖问题。而公路覆盖与大中城市或平原农村的覆盖有着较大区别,一般来说它要实现的是带状覆盖,故公路的覆盖多采用双向小区;在穿过城镇,旅游点的地区也综合采用三向、全向小区;再就是强调广覆盖,要结合站址及站型的选择来决定采用的天线类型。不同的公路环境差别很大,一般来说有较为平直的公路,如高速公路、铁路、国道、省道等等,推荐在公路旁建站,采用S1/1/1、或S1/1站型,配以高增益定向天线实现覆盖。有蜿蜒起伏的公路如盘山公路、县级自建的山区公路等等。得结合在公路附近的乡村覆盖,选择高处建站。站型得灵活配置,可能会用到全向加定向等特殊站型。不同的路段环境差别也很大,如高速公路与铁路所经过的地形往往复杂多变,有平原、高山、树林、隧道等,还要穿过乡村和城镇,所以对其无线网络的规划及天线选型时一定要在充分勘查的基础上具体对待各段公路,灵活规划。在初始规划进行天线选型时,应尽量选择覆盖距离广的高增益天线进行广覆盖,在覆盖不到的盲区路段可选用增益较低的天线进行补盲。天线选型原则:1、方向图的选择:在以覆盖铁路、公路沿线为目标的基站,可以采用窄波束高增益的定向天线。可根据布站点的道路局部地形起伏和拐弯等因素来灵活选择天线形式。如果覆盖目标为公路及周围零星分布的村庄,可以考虑采用全向天线或变形全向天线,如八字形或心形天线。纯公路覆盖时根据公路方向选择合适站址采用高增益(14dBi)8字型天线(O2/O1),或考虑S0.5/0.5的配置,最好具有零点填充;对于高速公路一侧有小村镇,用户不多时,可以采用210°-220°变形全向天线;2、极化方式选择:从发射信号的角度,在较为空旷地方采用垂直极化天线比采用其他极化天线效果更好。从接收的角度,在空旷的地方由于信号的反射较少,信号的极化方向改变不大,采用双极化天线进行极化分集接收时,分集增益不如空间分集。所以建议在进行公路覆盖时选用垂直单极化天线;3、天线增益的选择,若不是用来补盲,定向天线增益可选17dBi-22dBi的天线(有些高增益天线目前还未认证)。全向天线的增益选择11dBi。若是用来补盲,则可根据需要选择增益较低的天线;4、预置下倾角及零点填充的选择:由于预置下倾角会影响到基站的覆盖能力,所以在公路这种以覆盖为主的地方建议选用不带预置下倾角的天线。在50米以上且近端有覆盖要求时,可以优先选用零点填充(大于15%)的天线来解决塔下黑问题;5、下倾方式的选择:公路覆盖一般不打下倾。地区对天线的下倾调整不多,其下倾角的调整范围及特性要求不高,建议选用价格较便宜的机械下倾天线;6、前后比:由于公路覆盖大多数用户都是快速移动用户,所以为保证切换的正常进行,定向天线的前后比不宜太高,否则可能会由于两定向小区交叠深度太小而导致切换不及时造成掉话的情况。对于高速公路和铁路覆盖,建议优先选择“8”字形天线或S0.5/0.5配置,以减少高速移动用户接近/离开基站附近时的切换。由于在目前的天线认证库中65度的定向天线无垂直极化天线,所以将一些双极化天线也列了进去,作为一种退而求其次的选择。具体的选择的天线规格,请参考《天线选型原则》。山区覆盖基站天线选择应用环境特点:在偏远的丘陵山区,山体阻挡严重,电波的传播衰落较大,覆盖难度大。通常为广覆盖,在基站很广的覆盖半径内分布零散用户,话务量较小。基站或建在山顶上、山腰间、山脚下、或山区里的合适位置。需要区分不同的用户分布、地形特点来进行基站选址、选型、选择天线。以下这几种情况比较常见的:盆地型山区建站、高山上建站、半山腰建站、普通山区建站等。在盆地中心选址建站,如果盆地范围不大,推荐采用全向O2站型;如果盆地范围较大,或需要兼顾到某条出入盆地的交通要道,推荐采用S1/1/1或O+S的站型。有时受制于微波传输的因素,必须在某些很高的山上建站,此时天线离用户分布面往往有150米以上的落差。如果覆盖的目标区域就在山脚下附近,此时需配以带电子下倾角的全向天线,使信号波形向下,避免出现“塔下黑”的现象。在半山腰建站,基站天线的挂高低于山顶,山的背面无法覆盖。因此只需用定向小区,用半功率角较大的天线,覆盖山的正面。普通地形起伏不大的山区,推荐采用S1/1/1站型,尽量增加信号强度,给信号衰减留下更多的余量。天线选择原则:1、方向图的选择:视基站的位置、站型及周边覆盖需求来决定方向图的选择,可以选择全向天线,也可以选择定向天线。对于建在山上的基站,若需要覆盖的地方位置相对较低,则应选择垂直半功率角较大的方向图,更好地满足垂直方向的覆盖要求;2、天线增益选择:视需覆盖的区域的远近选择中等天线增益,全向天线(9-11dBi),定向天线(15-18dBi);3、预置下倾与零点填充选择:在山上建站,需覆盖的地方在山下时,要选用具有零点填充或预置下倾角的天线。对于预置下倾角的大小视基站与需覆盖地方的相对高度作出选择,相对高度越大预置下倾角也就应选择更大一些的天线。具体的选择的天线规格,请参考《天线选型原则》。近海覆盖基站天线选择应用环境特点:话务量较少,覆盖面广,无线传播环境好。经研究表明在海上的无线传播模型接近于自由空间传播模型。对近海的海面进行覆盖时,覆盖距离将主要受三个方面的限制,即地球球面曲率、无线传播衰减、TA值的限制。考虑到地球球面曲率的影响。因此对海面进行覆盖的基站天线一般架设得很高,超过100米。天线选择原则:1、方向图的选择:由于在近海覆盖中,面向海平面与背向海平面的应用环境完全不同,因此在进行近海覆盖时不选择全向天线,而是根据周边的覆盖需求选择定向天线。一般垂直半功率角可选择小一些的。2、天线增益的选择,由于覆盖距离很大,在选择天线增益时一般选择高增益(16dBi以上)的天线。 3、从发射信号的角度,在较为空旷地方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版无息农业贷款合同协议范本3篇
- 2025年度智慧交通信号控制系统承包合同3篇
- 2025年度美容护肤品促销礼品定制合同3篇
- 龙湖一期2025年土石方开挖及回填工程服务合同4篇
- 2025版事业单位职工食堂职工餐饮服务满意度提升承包合同2篇
- 惠州2025年法务专员招聘及企业法律风险管理合同2篇
- 2025年度面条品牌授权与加盟连锁经营合同范本
- 2025年度离婚财产分割与共同投资权益分配合同3篇
- 2025版夜间反光交通标牌采购合同3篇
- 2024汽车交易协议详细模板版B版
- 第一章 整式的乘除 单元测试(含答案) 2024-2025学年北师大版数学七年级下册
- 春节联欢晚会节目单课件模板
- 中国高血压防治指南(2024年修订版)
- 糖尿病眼病患者血糖管理
- 抖音音乐推广代运营合同样本
- 微机原理与接口技术考试试题及答案(综合-必看)
- 湿疮的中医护理常规课件
- 初中音乐听课笔记20篇
- NUDD新独难异 失效模式预防检查表
- 内蒙古汇能煤电集团有限公司长滩露天煤矿矿山地质环境保护与土地复垦方案
- 排水干管通球试验记录表
评论
0/150
提交评论