2025届贵州省遵义市航天高中高考仿真卷数学试卷含解析_第1页
2025届贵州省遵义市航天高中高考仿真卷数学试卷含解析_第2页
2025届贵州省遵义市航天高中高考仿真卷数学试卷含解析_第3页
2025届贵州省遵义市航天高中高考仿真卷数学试卷含解析_第4页
2025届贵州省遵义市航天高中高考仿真卷数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届贵州省遵义市航天高中高考仿真卷数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.的展开式中的系数为()A.-30 B.-40 C.40 D.502.已知全集,函数的定义域为,集合,则下列结论正确的是A. B.C. D.3.设分别为双曲线的左、右焦点,过点作圆的切线,与双曲线的左、右两支分别交于点,若,则双曲线渐近线的斜率为()A. B. C. D.4.已知正方体的棱长为,,,分别是棱,,的中点,给出下列四个命题:①;②直线与直线所成角为;③过,,三点的平面截该正方体所得的截面为六边形;④三棱锥的体积为.其中,正确命题的个数为()A. B. C. D.5.已知直线是曲线的切线,则()A.或1 B.或2 C.或 D.或16.已知函数与的图象有一个横坐标为的交点,若函数的图象的纵坐标不变,横坐标变为原来的倍后,得到的函数在有且仅有5个零点,则的取值范围是()A. B.C. D.7.若双曲线的离心率为,则双曲线的焦距为()A. B. C.6 D.88.某几何体的三视图如图所示,图中圆的半径为1,等腰三角形的腰长为3,则该几何体表面积为()A. B. C. D.9.设命题:,,则为A., B.,C., D.,10.已知中,角、所对的边分别是,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.既不充分也不必要条件 D.充分必要条件11.已知向量与向量平行,,且,则()A. B.C. D.12.设是虚数单位,,,则()A. B. C.1 D.2二、填空题:本题共4小题,每小题5分,共20分。13.正四棱柱中,,.若是侧面内的动点,且,则与平面所成角的正切值的最大值为___________.14.设,满足约束条件,若的最大值是10,则________.15.设,满足条件,则的最大值为__________.16.展开式中项系数为160,则的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角,,的对边分别为,,,,,且的面积为.(1)求;(2)求的周长.18.(12分)设函数f(x)=|x﹣a|+|x|(a>0).(1)若不等式f(x)﹣|x|≥4x的解集为{x|x≤1},求实数a的值;(2)证明:f(x).19.(12分)如图,在四棱锥中,底面是直角梯形且∥,侧面为等边三角形,且平面平面.(1)求平面与平面所成的锐二面角的大小;(2)若,且直线与平面所成角为,求的值.20.(12分)已知.(1)当时,求不等式的解集;(2)若,,证明:.21.(12分)已知函数,.(1)当时,求函数的值域;(2),,求实数的取值范围.22.(10分)已知抛物线与直线.(1)求抛物线C上的点到直线l距离的最小值;(2)设点是直线l上的动点,是定点,过点P作抛物线C的两条切线,切点为A,B,求证A,Q,B共线;并在时求点P坐标.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

先写出的通项公式,再根据的产生过程,即可求得.【详解】对二项式,其通项公式为的展开式中的系数是展开式中的系数与的系数之和.令,可得的系数为;令,可得的系数为;故的展开式中的系数为.故选:C.【点睛】本题考查二项展开式中某一项系数的求解,关键是对通项公式的熟练使用,属基础题.2、A【解析】

求函数定义域得集合M,N后,再判断.【详解】由题意,,∴.故选A.【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.3、C【解析】

如图所示:切点为,连接,作轴于,计算,,,,根据勾股定理计算得到答案.【详解】如图所示:切点为,连接,作轴于,,故,在中,,故,故,,根据勾股定理:,解得.故选:.【点睛】本题考查了双曲线的渐近线斜率,意在考查学生的计算能力和综合应用能力.4、C【解析】

画出几何体的图形,然后转化判断四个命题的真假即可.【详解】如图;连接相关点的线段,为的中点,连接,因为是中点,可知,,可知平面,即可证明,所以①正确;直线与直线所成角就是直线与直线所成角为;正确;过,,三点的平面截该正方体所得的截面为五边形;如图:是五边形.所以③不正确;如图:三棱锥的体积为:由条件易知F是GM中点,所以,而,.所以三棱锥的体积为,④正确;故选:.【点睛】本题考查命题的真假的判断与应用,涉及空间几何体的体积,直线与平面的位置关系的应用,平面的基本性质,是中档题.5、D【解析】

求得直线的斜率,利用曲线的导数,求得切点坐标,代入直线方程,求得的值.【详解】直线的斜率为,对于,令,解得,故切点为,代入直线方程得,解得或1.故选:D【点睛】本小题主要考查根据切线方程求参数,属于基础题.6、A【解析】

根据题意,,求出,所以,根据三角函数图像平移伸缩,即可求出的取值范围.【详解】已知与的图象有一个横坐标为的交点,则,,,,,若函数图象的纵坐标不变,横坐标变为原来的倍,则,所以当时,,在有且仅有5个零点,,.故选:A.【点睛】本题考查三角函数图象的性质、三角函数的平移伸缩以及零点个数问题,考查转化思想和计算能力.7、A【解析】

依题意可得,再根据离心率求出,即可求出,从而得解;【详解】解:∵双曲线的离心率为,所以,∴,∴,双曲线的焦距为.故选:A【点睛】本题考查双曲线的简单几何性质,属于基础题.8、C【解析】

几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,计算得到答案.【详解】几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,故几何体的表面积为.故选:.【点睛】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.9、D【解析】

直接利用全称命题的否定是特称命题写出结果即可.【详解】因为全称命题的否定是特称命题,所以,命题:,,则为:,.故本题答案为D.【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.10、D【解析】

由大边对大角定理结合充分条件和必要条件的定义判断即可.【详解】中,角、所对的边分别是、,由大边对大角定理知“”“”,“”“”.因此,“”是“”的充分必要条件.故选:D.【点睛】本题考查充分条件、必要条件的判断,考查三角形的性质等基础知识,考查逻辑推理能力,是基础题.11、B【解析】

设,根据题意得出关于、的方程组,解出这两个未知数的值,即可得出向量的坐标.【详解】设,且,,由得,即,①,由,②,所以,解得,因此,.故选:B.【点睛】本题考查向量坐标的求解,涉及共线向量的坐标表示和向量数量积的坐标运算,考查计算能力,属于中等题.12、C【解析】

由,可得,通过等号左右实部和虚部分别相等即可求出的值.【详解】解:,,解得:.故选:C.【点睛】本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把当成进行运算.二、填空题:本题共4小题,每小题5分,共20分。13、2.【解析】

如图,以为原点建立空间直角坐标系,设点,由得,证明为与平面所成角,令,用三角函数表示出,求解三角函数的最大值得到结果.【详解】如图,以为原点建立空间直角坐标系,设点,则,,又,得即;又平面,为与平面所成角,令,当时,最大,即与平面所成角的正切值的最大值为2.故答案为:2【点睛】本题主要考查了立体几何中的动点问题,考查了直线与平面所成角的计算.对于这类题,一般是建立空间直角坐标,在动点坐标内引入参数,将最值问题转化为函数的最值问题求解,考查了学生的运算求解能力和直观想象能力.14、【解析】

画出不等式组表示的平面区域,数形结合即可容易求得结果.【详解】画出不等式组表示的平面区域如下所示:目标函数可转化为与直线平行,数形结合可知当且仅当目标函数过点,取得最大值,故可得,解得.故答案为:.【点睛】本题考查由目标函数的最值求参数值,属基础题.15、【解析】

作出可行域,由得,平移直线,数形结合可求的最大值.【详解】作出可行域如图所示由得,则是直线在轴上的截距.平移直线,当直线经过可行域内的点时,最小,此时最大.解方程组,得,..故答案为:.【点睛】本题考查简单的线性规划,属于基础题.16、-2【解析】

表示该二项式的展开式的第r+1项,令其指数为3,再代回原表达式构建方程求得答案.【详解】该二项式的展开式的第r+1项为令,所以,则故答案为:【点睛】本题考查由二项式指定项的系数求参数,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)利用正弦,余弦定理对式子化简求解即可;(2)利用余弦定理以及三角形的面积,求解三角形的周长即可.【详解】(1),由正弦定理可得:,即:,由余弦定理得.(2)∵,所以,,又,且,,的周长为【点睛】本题考查正弦定理以及余弦定理的应用,三角形的面积公式,也考查计算能力,属于基础题.18、(1)a=1;(2)见解析【解析】

(1)由题意可得|x﹣a|≥4x,分类讨论去掉绝对值,分别求得x的范围即可求出a的值.(2)由条件利用绝对值三角不等式,基本不等式证得f(x)≥2..【详解】(1)由f(x)﹣|x|≥4x,可得|x﹣a|≥4x,(a>0),当x≥a时,x﹣a≥4x,解得x,这与x≥a>0矛盾,故不成立,当x<a时,a﹣x≥4x,解得x,又不等式的解集是{x|x≤1},故1,解得a=1.(2)证明:f(x)=|x﹣a|+|x||x﹣a﹣(x)|=|a|,∵a>0,∴|a|=a22,当且仅当a时取等号,故f(x).【点睛】本题主要考查绝对值三角不等式,基本不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于基础题.19、(1);(2).【解析】

(1)分别取的中点为,易得两两垂直,以所在直线为轴建立空间直角坐标系,易得为平面的法向量,只需求出平面的法向量为,再利用计算即可;(2)求出,利用计算即可.【详解】(1)分别取的中点为,连结.因为∥,所以∥.因为,所以.因为侧面为等边三角形,所以又因为平面平面,平面平面,平面,所以平面,所以两两垂直.以为空间坐标系的原点,分别以所在直线为轴建立如图所示的空间直角坐标系,因为,则,,.设平面的法向量为,则,即.取,则,所以.又为平面的法向量,设平面与平面所成的锐二面角的大小为,则,所以平面与平面所成的锐二面角的大小为.(2)由(1)得,平面的法向量为,所以成.又直线与平面所成角为,所以,即,即,化简得,所以,符合题意.【点睛】本题考查利用向量坐标法求面面角、线面角,涉及到面面垂直的性质定理的应用,做好此类题的关键是准确写出点的坐标,是一道中档题.20、(1)(2)见证明【解析】

(1)利用零点分段法讨论去掉绝对值求解;(2)利用绝对值不等式的性质进行证明.【详解】(1)解:当时,不等式可化为.当时,,,所以;当时,,.所以不等式的解集是.(2)证明:由,,得,,,又,所以,即.【点睛】本题主要考查含有绝对值不等式问题的求解,含有绝对值不等式的解法一般是使用零点分段讨论法.21、(1);(2).【解析】

(1)将代入函数的解析式,将函数的及解析式变形为分段函数,利用二次函数的基本性质可求得函数的值域;(2)由参变量分离法得出在区间内有解,分和讨论,求得函数的最大值,即可得出实数的取值范围.【详解】(1)当时,.当时,;当时,.函数的值域为;(2)不等式等价于,即在区间内有解当时,,此时,,则;当时,,函数在区间上单调递增,当时,,则.综上,实数的取值范围是.【点睛】本题主要考查含绝对值函数的值域与含绝对值不等式有解的问题,利用绝对值的应用将函数转化为二次函数,结合二次函数的性质是解决本题的关键,考查分类讨论思想的应用,属于中等题.22、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论