版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省广元市高中名校2025届高考数学二模试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合(),若集合,且对任意的,存在使得,其中,,则称集合A为集合M的基底.下列集合中能作为集合的基底的是()A. B. C. D.2.若函数有且仅有一个零点,则实数的值为()A. B. C. D.3.已知i是虚数单位,则1+iiA.-12+32i4.M、N是曲线y=πsinx与曲线y=πcosx的两个不同的交点,则|MN|的最小值为()A.π B.π C.π D.2π5.已知函数的图象与直线的相邻交点间的距离为,若定义,则函数,在区间内的图象是()A. B.C. D.6.胡夫金字塔是底面为正方形的锥体,四个侧面都是相同的等腰三角形.研究发现,该金字塔底面周长除以倍的塔高,恰好为祖冲之发现的密率.设胡夫金字塔的高为,假如对胡夫金字塔进行亮化,沿其侧棱和底边布设单条灯带,则需要灯带的总长度约为A. B.C. D.7.执行如图所示的程序框图,若输出的,则输入的整数的最大值为()A.7 B.15 C.31 D.638.已知双曲线的焦距为,过左焦点作斜率为1的直线交双曲线的右支于点,若线段的中点在圆上,则该双曲线的离心率为()A. B. C. D.9.甲、乙、丙、丁四人通过抓阄的方式选出一人周末值班(抓到“值”字的人值班).抓完阄后,甲说:“我没抓到.”乙说:“丙抓到了.”丙说:“丁抓到了”丁说:“我没抓到."已知他们四人中只有一人说了真话,根据他们的说法,可以断定值班的人是()A.甲 B.乙 C.丙 D.丁10.已知三棱锥中,为的中点,平面,,,则有下列四个结论:①若为的外心,则;②若为等边三角形,则;③当时,与平面所成的角的范围为;④当时,为平面内一动点,若OM∥平面,则在内轨迹的长度为1.其中正确的个数是().A.1 B.1 C.3 D.411.已知函数(其中,,)的图象关于点成中心对称,且与点相邻的一个最低点为,则对于下列判断:①直线是函数图象的一条对称轴;②点是函数的一个对称中心;③函数与的图象的所有交点的横坐标之和为.其中正确的判断是()A.①② B.①③ C.②③ D.①②③12.如图,在圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,异面直线SC与OE所成角的正切值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点,则的值是.14.设复数满足,其中是虚数单位,若是的共轭复数,则____________.15.已知实数,且由的最大值是_________16.在中,,.若,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知x,y,z均为正数.(1)若xy<1,证明:|x+z|⋅|y+z|>4xyz;(2)若=,求2xy⋅2yz⋅2xz的最小值.18.(12分)手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不仅全国闻名,还大量远销海外.近年来某手工艺品村制作的手工艺品在国外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(i)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A级;(ii)若仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关,若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B级,若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C级;(iii)若有2位或3位行家认为质量不过关,则该手工艺品质量为D级.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立.(1)求一件手工艺品质量为B级的概率;(2)若一件手工艺品质量为A,B,C级均可外销,且利润分别为900元,600元,300元,质量为D级不能外销,利润记为100元.①求10件手工艺品中不能外销的手工艺品最有可能是多少件;②记1件手工艺品的利润为X元,求X的分布列与期望.19.(12分)已知函数.其中是自然对数的底数.(1)求函数在点处的切线方程;(2)若不等式对任意的恒成立,求实数的取值范围.20.(12分)如图,在四棱柱中,平面,底面ABCD满足∥BC,且(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.21.(12分)已知函数.(1)求函数f(x)的最小正周期;(2)求在上的最大值和最小值.22.(10分)某校共有学生2000人,其中男生900人,女生1100人,为了调查该校学生每周平均体育锻炼时间,采用分层抽样的方法收集该校100名学生每周平均体育锻炼时间(单位:小时).(1)应抽查男生与女生各多少人?(2)根据收集100人的样本数据,得到学生每周平均体育锻炼时间的频率分布表:时间(小时)[0,1](1,2](2,3](3,4](4,5](5,6]频率0.050.200.300.250.150.05若在样本数据中有38名男学生平均每周课外体育锻炼时间超过2小时,请完成每周平均体育锻炼时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均体育锻炼时间与性别有关”?男生女生总计每周平均体育锻炼时间不超过2小时每周平均体育锻炼时间超过2小时总计附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.879
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据题目中的基底定义求解.【详解】因为,,,,,,所以能作为集合的基底,故选:C【点睛】本题主要考查集合的新定义,还考查了理解辨析的能力,属于基础题.2、D【解析】
推导出函数的图象关于直线对称,由题意得出,进而可求得实数的值,并对的值进行检验,即可得出结果.【详解】,则,,,所以,函数的图象关于直线对称.若函数的零点不为,则该函数的零点必成对出现,不合题意.所以,,即,解得或.①当时,令,得,作出函数与函数的图象如下图所示:此时,函数与函数的图象有三个交点,不合乎题意;②当时,,,当且仅当时,等号成立,则函数有且只有一个零点.综上所述,.故选:D.【点睛】本题考查利用函数的零点个数求参数,考查函数图象对称性的应用,解答的关键就是推导出,在求出参数后要对参数的值进行检验,考查分析问题和解决问题的能力,属于中等题.3、D【解析】
利用复数的运算法则即可化简得出结果【详解】1+i故选D【点睛】本题考查了复数代数形式的乘除运算,属于基础题。4、C【解析】
两函数的图象如图所示,则图中|MN|最小,设M(x1,y1),N(x2,y2),则x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故选C.5、A【解析】
由题知,利用求出,再根据题给定义,化简求出的解析式,结合正弦函数和正切函数图象判断,即可得出答案.【详解】根据题意,的图象与直线的相邻交点间的距离为,所以的周期为,则,所以,由正弦函数和正切函数图象可知正确.故选:A.【点睛】本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解.6、D【解析】
设胡夫金字塔的底面边长为,由题可得,所以,该金字塔的侧棱长为,所以需要灯带的总长度约为,故选D.7、B【解析】试题分析:由程序框图可知:①,;②,;③,;④,;⑤,.第⑤步后输出,此时,则的最大值为15,故选B.考点:程序框图.8、C【解析】
设线段的中点为,判断出点的位置,结合双曲线的定义,求得双曲线的离心率.【详解】设线段的中点为,由于直线的斜率是,而圆,所以.由于是线段的中点,所以,而,根据双曲线的定义可知,即,即.故选:C【点睛】本小题主要考查双曲线的定义和离心率的求法,考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.9、A【解析】
可采用假设法进行讨论推理,即可得到结论.【详解】由题意,假设甲:我没有抓到是真的,乙:丙抓到了,则丙:丁抓到了是假的,丁:我没有抓到就是真的,与他们四人中只有一个人抓到是矛盾的;假设甲:我没有抓到是假的,那么丁:我没有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以断定值班人是甲.故选:A.【点睛】本题主要考查了合情推理及其应用,其中解答中合理采用假设法进行讨论推理是解答的关键,着重考查了推理与分析判断能力,属于基础题.10、C【解析】
由线面垂直的性质,结合勾股定理可判断①正确;反证法由线面垂直的判断和性质可判断②错误;由线面角的定义和转化为三棱锥的体积,求得C到平面PAB的距离的范围,可判断③正确;由面面平行的性质定理可得线面平行,可得④正确.【详解】画出图形:若为的外心,则,平面,可得,即,①正确;若为等边三角形,,又可得平面,即,由可得,矛盾,②错误;若,设与平面所成角为可得,设到平面的距离为由可得即有,当且仅当取等号.可得的最大值为,即的范围为,③正确;取中点,的中点,连接由中位线定理可得平面平面可得在线段上,而,可得④正确;所以正确的是:①③④故选:C【点睛】此题考查立体几何中与点、线、面位置关系有关的命题的真假判断,处理这类问题,可以用已知的定理或性质来证明,也可以用反证法来说明命题的不成立.属于一般性题目.11、C【解析】分析:根据最低点,判断A=3,根据对称中心与最低点的横坐标求得周期T,再代入最低点可求得解析式为,依次判断各选项的正确与否.详解:因为为对称中心,且最低点为,所以A=3,且由所以,将带入得,所以由此可得①错误,②正确,③当时,,所以与有6个交点,设各个交点坐标依次为,则,所以③正确所以选C点睛:本题考查了根据条件求三角函数的解析式,通过求得的解析式进一步研究函数的性质,属于中档题.12、D【解析】
可过点S作SF∥OE,交AB于点F,并连接CF,从而可得出∠CSF(或补角)为异面直线SC与OE所成的角,根据条件即可求出,这样即可得出tan∠CSF的值.【详解】如图,过点S作SF∥OE,交AB于点F,连接CF,则∠CSF(或补角)即为异面直线SC与OE所成的角,∵,∴,又OB=3,∴,SO⊥OC,SO=OC=3,∴;SO⊥OF,SO=3,OF=1,∴;OC⊥OF,OC=3,OF=1,∴,∴等腰△SCF中,.故选:D.【点睛】本题考查了异面直线所成角的定义及求法,直角三角形的边角的关系,平行线分线段成比例的定理,考查了计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】试题分析:由三角函数定义知,又由诱导公式知,所以答案应填:.考点:1、三角函数定义;2、诱导公式.14、【解析】
由于,则.15、【解析】
将其转化为几何意义,然后根据最值的条件求出最大值【详解】由化简得,又实数,图形为圆,如图:,可得,则由几何意义得,则,为求最大值则当过点或点时取最小值,可得所以的最大值是【点睛】本题考查了二元最值问题,将其转化为几何意义,得到圆的方程及斜率问题,对要求的二元二次表达式进行化简,然后求出最值问题,本题有一定难度。16、【解析】分析:首先设出相应的直角边长,利用余弦勾股定理得到相应的斜边长,之后应用余弦定理得到直角边长之间的关系,从而应用正切函数的定义,对边比临边,求得对应角的正切值,即可得结果.详解:根据题意,设,则,根据,得,由勾股定理可得,根据余弦定理可得,化简整理得,即,解得,所以,故答案是.点睛:该题考查的是有关解三角形的问题,在解题的过程中,注意分析要求对应角的正切值,需要求谁,而题中所给的条件与对应的结果之间有什么样的连线,设出直角边长,利用所给的角的余弦值,利用余弦定理得到相应的等量关系,求得最后的结果.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)最小值为1【解析】
(1)利用基本不等式可得,再根据0<xy<1时,即可证明|x+z|⋅|y+z|>4xyz.(2)由=,得,然后利用基本不等式即可得到xy+yz+xz≥3,从而求出2xy⋅2yz⋅2xz的最小值.【详解】(1)证明:∵x,y,z均为正数,∴|x+z|⋅|y+z|=(x+z)(y+z)≥=,当且仅当x=y=z时取等号.又∵0<xy<1,∴,∴|x+z|⋅|y+z|>4xyz;(2)∵=,即.∵,,,当且仅当x=y=z=1时取等号,∴,∴xy+yz+xz≥3,∴2xy⋅2yz⋅2xz=2xy+yz+xz≥1,∴2xy⋅2yz⋅2xz的最小值为1.【点睛】本题考查了利用综合法证明不等式和利用基本不等式求最值,考查了转化思想和运算能力,属中档题.18、(1);(2)①可能是2件;②详见解析【解析】
(1)由一件手工艺品质量为B级的情形,并结合相互独立事件的概率公式,列式计算即可;(2)①先求得一件手工艺品质量为D级的概率为,设10件手工艺品中不能外销的手工艺品可能是件,可知,分别令、、,可求出使得最大的整数,进而可求出10件手工艺品中不能外销的手工艺品的最有可能件数;②分别求出一件手工艺品质量为A、B、C、D级的概率,进而可列出X的分布列,求出期望即可.【详解】(1)一件手工艺品质量为B级的概率为.(2)①由题意可得一件手工艺品质量为D级的概率为,设10件手工艺品中不能外销的手工艺品可能是件,则,则,其中,.由得,整数不存在,由得,所以当时,,即,由得,所以当时,,所以当时,最大,即10件手工艺品中不能外销的手工艺品最有可能是2件.②由题意可知,一件手工艺品质量为A级的概率为,一件手工艺品质量为B级的概率为,一件手工艺品质量为C级的概率为,一件手工艺品质量为D级的概率为,所以X的分布列为:X900600300100P则期望为.【点睛】本题考查相互独立事件的概率计算,考查离散型随机变量的分布列及数学期望,考查学生的计算求解能力,属于中档题.19、(1);(2).【解析】
(1)利用导数的几何意义求出切线的斜率,再求出切点坐标即可得在点处的切线方程;(2)令,然后利用导数并根据a的情况研究函数的单调性和最值.【详解】(1),,∴,又,∴切线方程为,即.(2)令,,①若,则在上单调递减,又,∴恒成立,∴在上单调递减,又,∴恒成立.②若,令,∴,易知与在上单调递减,∴在上单调递减,,当即时,在上恒成立,∴在上单调递减,即在上单调递减,又,∴恒成立,∴在上单调递减,又,∴恒成立,当即时,使,∴在递增,此时,∴,∴在递增,∴,不合题意.综上,实数的取值范围是.【点睛】本题主要考查导数的几何意义及构造函数解决含参数的不等式恒成立时求参数的取值范围问题,第二问的难点是构造函数后二次求导问题,对分类讨论思想及化归与等价转化思想要求较高,难度较大,属拔高题.20、(Ⅰ)证明见解析;(Ⅱ)【解析】
(Ⅰ)证明,根据得到,得到证明.(Ⅱ)如图所示,分别以为轴建立空间直角坐标系,平面的法向量,,计算向量夹角得到答案.【详解】(Ⅰ)平面,平面,故.,,故
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 魅力沟通(陕西职业技术学院)知到智慧树答案
- 口腔内科学(甘肃卫生职业学院)知到智慧树答案
- 山庄生态观光园项目可行性研究报告
- 《砌体结构墙梁》课件
- 汽车销售与维修服务中心建设可研报告
- 售后客服岗位职责
- 论语课件(天津)
- 《怀疑与学问》第一课时人教版九年级语文上册课件
- (部编版八年级《政治》课件)第2课时-在社会中成长
- 《碳酸酐酶修改》课件
- 2024年湖北省中考道德与法治试卷附答案
- CJJT47-2016 生活垃圾转运站技术规范
- JT-T-1214-2018港口高杆灯技术要求
- 小罐茶行业分析报告
- 颅内感染的护理查房
- 高中数学-人教电子版课本
- 外贸公司介绍
- 2024年度-银行不良清收技巧培训课件(学员版)
- MOOC 摄影艺术概论-浙江工商大学 中国大学慕课答案
- 2024年上海市杨浦区高三二模英语试卷及答案
- 中国电影改编的跨文化传播启示以中外电影《花木兰》对比分析为例
评论
0/150
提交评论