版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市朝阳区陈经伦中学2025届高考冲刺数学模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.高三珠海一模中,经抽样分析,全市理科数学成绩X近似服从正态分布,且.从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为()A.40 B.60 C.80 D.1002.空气质量指数是反映空气状况的指数,指数值趋小,表明空气质量越好,下图是某市10月1日-20日指数变化趋势,下列叙述错误的是()A.这20天中指数值的中位数略高于100B.这20天中的中度污染及以上(指数)的天数占C.该市10月的前半个月的空气质量越来越好D.总体来说,该市10月上旬的空气质量比中旬的空气质量好3.若为虚数单位,则复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.若集合,,则()A. B. C. D.5.已知双曲线()的渐近线方程为,则()A. B. C. D.6.我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金()A.多1斤 B.少1斤 C.多斤 D.少斤7.已知复数和复数,则为A. B. C. D.8.设f(x)是定义在R上的偶函数,且在(0,+∞)单调递减,则()A. B.C. D.9.已知函数,则()A.1 B.2 C.3 D.410.已知数列满足:,则()A.16 B.25 C.28 D.3311.已知直线y=k(x﹣1)与抛物线C:y2=4x交于A,B两点,直线y=2k(x﹣2)与抛物线D:y2=8x交于M,N两点,设λ=|AB|﹣2|MN|,则()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣1212.设,,,则,,三数的大小关系是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数(为自然对数的底数,),若函数恰有个零点,则实数的取值范围为__________________.14.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为__________.15.(5分)在长方体中,已知棱长,体对角线,两异面直线与所成的角为,则该长方体的表面积是____________.16.在如图所示的三角形数阵中,用表示第行第个数,已知,且当时,每行中的其他各数均等于其“肩膀”上的两个数之和,即,若,则正整数的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(1)当时,求不等式的解集;(2)若,,证明:.18.(12分)已知点,且,满足条件的点的轨迹为曲线.(1)求曲线的方程;(2)是否存在过点的直线,直线与曲线相交于两点,直线与轴分别交于两点,使得?若存在,求出直线的方程;若不存在,请说明理由.19.(12分)在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线:.过点的直线:(为参数)与曲线相交于,两点.(1)求曲线的直角坐标方程和直线的普通方程;(2)若,求实数的值.20.(12分)已知函数,且.(1)求的解析式;(2)已知,若对任意的,总存在,使得成立,求的取值范围.21.(12分)已知直线:与抛物线切于点,直线:过定点Q,且抛物线上的点到点Q的距离与其到准线距离之和的最小值为.(1)求抛物线的方程及点的坐标;(2)设直线与抛物线交于(异于点P)两个不同的点A、B,直线PA,PB的斜率分别为,那么是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.22.(10分)已知满足,且,求的值及的面积.(从①,②,③这三个条件中选一个,补充到上面问题中,并完成解答.)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
由正态分布的性质,根据题意,得到,求出概率,再由题中数据,即可求出结果.【详解】由题意,成绩X近似服从正态分布,则正态分布曲线的对称轴为,根据正态分布曲线的对称性,求得,所以该市某校有500人中,估计该校数学成绩不低于110分的人数为人,故选:.【点睛】本题考查正态分布的图象和性质,考查学生分析问题的能力,难度容易.2、C【解析】
结合题意,根据题目中的天的指数值,判断选项中的命题是否正确.【详解】对于,由图可知天的指数值中有个低于,个高于,其中第个接近,第个高于,所以中位数略高于,故正确.对于,由图可知天的指数值中高于的天数为,即占总天数的,故正确.对于,由图可知该市月的前天的空气质量越来越好,从第天到第天空气质量越来越差,故错误.对于,由图可知该市月上旬大部分指数在以下,中旬大部分指数在以上,所以该市月上旬的空气质量比中旬的空气质量好,故正确.故选:【点睛】本题考查了对折线图数据的分析,读懂题意是解题关键,并能运用所学知识对命题进行判断,本题较为基础.3、D【解析】
根据复数的运算,化简得到,再结合复数的表示,即可求解,得到答案.【详解】由题意,根据复数的运算,可得,所对应的点为位于第四象限.故选D.【点睛】本题主要考查了复数的运算,以及复数的几何意义,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力,属于基础题.4、B【解析】
根据正弦函数的性质可得集合A,由集合性质表示形式即可求得,进而可知满足.【详解】依题意,;而,故,则.故选:B.【点睛】本题考查了集合关系的判断与应用,集合的包含关系与补集关系的应用,属于中档题.5、A【解析】
根据双曲线方程(),确定焦点位置,再根据渐近线方程得到求解.【详解】因为双曲线(),所以,又因为渐近线方程为,所以,所以.故选:A.【点睛】本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题.6、C【解析】设这十等人所得黄金的重量从大到小依次组成等差数列则由等差数列的性质得,故选C7、C【解析】
利用复数的三角形式的乘法运算法则即可得出.【详解】z1z2=(cos23°+isin23°)•(cos37°+isin37°)=cos60°+isin60°=.故答案为C.【点睛】熟练掌握复数的三角形式的乘法运算法则是解题的关键,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.8、D【解析】
利用是偶函数化简,结合在区间上的单调性,比较出三者的大小关系.【详解】是偶函数,,而,因为在上递减,,即.故选:D【点睛】本小题主要考查利用函数的奇偶性和单调性比较大小,属于基础题.9、C【解析】
结合分段函数的解析式,先求出,进而可求出.【详解】由题意可得,则.故选:C.【点睛】本题考查了求函数的值,考查了分段函数的性质,考查运算求解能力,属于基础题.10、C【解析】
依次递推求出得解.【详解】n=1时,,n=2时,,n=3时,,n=4时,,n=5时,.故选:C【点睛】本题主要考查递推公式的应用,意在考查学生对这些知识的理解掌握水平.11、D【解析】
分别联立直线与抛物线的方程,利用韦达定理,可得,,然后计算,可得结果.【详解】设,联立则,因为直线经过C的焦点,所以.同理可得,所以故选:D.【点睛】本题考查的是直线与抛物线的交点问题,运用抛物线的焦点弦求参数,属基础题。12、C【解析】
利用对数函数,指数函数以及正弦函数的性质和计算公式,将a,b,c与,比较即可.【详解】由,,,所以有.选C.【点睛】本题考查对数值,指数值和正弦值大小的比较,是基础题,解题时选择合适的中间值比较是关键,注意合理地进行等价转化.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
令,则,恰有四个解.由判断函数增减性,求出最小值,列出相应不等式求解得出的取值范围.【详解】解:令,则,恰有四个解.有两个解,由,可得在上单调递减,在上单调递增,则,可得.设的负根为,由题意知,,,,则,.故答案为:.【点睛】本题考查导数在函数当中的应用,属于难题.14、.【解析】分析:由题意结合古典概型计算公式即可求得题中的概率值.详解:由题意可知了,比赛可能的方法有种,其中田忌可获胜的比赛方法有三种:田忌的中等马对齐王的下等马,田忌的上等马对齐王的下等马,田忌的上等马对齐王的中等马,结合古典概型公式可得,田忌的马获胜的概率为.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.15、10【解析】
作出长方体如图所示,由于,则就是异面直线与所成的角,且,在等腰直角三角形中,由,得,又,则,从而长方体的表面积为.16、2022【解析】
根据条件先求出数列的通项,利用累加法进行求解即可.【详解】,,,下面求数列的通项,由题意知,,,,,,数列是递增数列,且,的最小值为.故答案为:.【点睛】本题主要考查归纳推理的应用,结合数列的性质求出数列的通项是解决本题的关键.综合性较强,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见证明【解析】
(1)利用零点分段法讨论去掉绝对值求解;(2)利用绝对值不等式的性质进行证明.【详解】(1)解:当时,不等式可化为.当时,,,所以;当时,,.所以不等式的解集是.(2)证明:由,,得,,,又,所以,即.【点睛】本题主要考查含有绝对值不等式问题的求解,含有绝对值不等式的解法一般是使用零点分段讨论法.18、(1)(2)存在,或.【解析】
(1)由得看成到两定点的和为定值,满足椭圆定义,用定义可解曲线的方程.(2)先讨论斜率不存在情况是否符合题意,当直线的斜率存在时,设直线点斜式方程,由,可得,再直线与椭圆联解,利用根的判别式得到关于的一元二次方程求解.【详解】解:设,由,,可得,即为,由,可得的轨迹是以为焦点,且的椭圆,由,可得,可得曲线的方程为;假设存在过点的直线l符合题意.当直线的斜率不存在,设方程为,可得为短轴的两个端点,不成立;当直线的斜率存在时,设方程为,由,可得,即,可得,化为,由可得,由在椭圆内,可得直线与椭圆相交,,则化为,即为,解得,所以存在直线符合题意,且方程为或.【点睛】本题考查求轨迹方程及直线与圆锥曲线位置关系问题.(1)定义法求轨迹方程的思路:应用定义法求轨迹方程的关键在于由已知条件推出关于动点的等量关系式,由等量关系结合曲线定义判断是何种曲线,再设出标准方程,用待定系数法求解;(2)解决是否存在直线的问题时,可依据条件寻找适合条件的直线方程,联立方程消元得出一元二次方程,利用判别式得出是否有解.19、(1),;(2).【解析】
(1)将代入求解,由(为参数)消去即可.(2)将(为参数)与联立得,设,两点对应的参数为,,则,,再根据,即,利用韦达定理求解.【详解】(1)把代入,得,由(为参数),消去得,∴曲线的直角坐标方程和直线的普通方程分别是,.(2)将(为参数)代入得,设,两点对应的参数为,,则,,由得,所以,即,所以,而,解得.【点睛】本题主要考查参数方程、极坐标方程、直角坐标方程的转化和直线参数方程的应用,还考查了运算求解的能力,属于中档题.20、(1);(2)【解析】
(1)由,可求出的值,进而可求得的解析式;(2)分别求得和的值域,再结合两个函数的值域间的关系可求出的取值范围.【详解】(1)因为,所以,解得,故.(2)因为,所以,所以,则,图象的对称轴是.因为,所以,则,解得,故的取值范围是.【点睛】本题考查了三角函数的恒等变换,考查了二次函数及三角函数值域的求法,考查了学生的计算求解能力,属于中档题.21、(1),(1,2);(2)存在,【解析】
(1)由直线恒过点点及抛物线C上的点到点Q的距离与到准线的距离之和的最小值为,求出抛物线的方程,再由直线与抛物线相切,即可求得切点的坐标;(2)直线与抛物线方程联立,利用根与系数的关系,求得直线PA,PB的斜率,求出斜率之和为定值,即存在实数使得斜率之和为定值.【详解】(1)由题意,直线变为2x+1-m(2y+1)=0,所以定点Q的坐标为抛物线的焦点坐标,由抛物线C上的点到点Q的距离与到其焦点F的距离之和的最小值为,可得,解得或(舍去),故抛物线C的方程为又由消去y得,因为直线与抛物线C相切,所以,解得,此时,所以点P坐标为(1,2)(2)设存在满足条件的实数,点,联立,消去x得,则,依题意,可得,解得m<-1或,由(1)知P(1,2),可得,同理可得,所以=,故存在实数=满足条件.【点睛】本题主要考查抛物线方程的求解、及直线与圆锥曲线的位置关系的综合应用,解答此类题目,通常联立直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年全年班车租赁服务合同3篇
- 手术室脑出血护理查房
- 2024年度虚拟现实技术应用合作协议
- 2024【合同范本】外墙干挂石材合同
- 2024购买房屋协议合同范本
- 2024年度广告发布合同标的及广告内容具体要求3篇
- 2024年度医疗设备采购及维护服务合同
- 2024年临时劳务分包协议3篇
- 恶性肿瘤靶向治疗的护理
- 2024年度消防设施维修与保养合同2篇
- 2024届北京市西城区数学九年级第一学期期末监测试题含解析
- 2024年中考英语考纲词汇重点单词800词(复习必背)
- 李子坪乡村旅游基地建设项目招标文件
- 科研伦理与学术规范期末考试
- 环境科学专业大学生职业生涯规划书
- 英语语言学(山东大学)智慧树知到课后章节答案2023年下山东大学(威海)
- 监理人员考勤表
- 基于单片机的电子跑表设计
- 第十四章 机械通气(急危重症护理学)
- 中小学班会课评价表
- GB/T 10000-2023中国成年人人体尺寸
评论
0/150
提交评论