版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省赣州市于都县二中2025届高考冲刺模拟数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.计算等于()A. B. C. D.2.正项等差数列的前和为,已知,则=()A.35 B.36 C.45 D.543.函数的部分图象如图所示,则()A.6 B.5 C.4 D.34.已知双曲线x2a2-y2b2=1(a>0,b>0),其右焦点F的坐标为(c,0),点A是第一象限内双曲线渐近线上的一点,O为坐标原点,满足|OA|=A.2 B.2 C.2335.设集合,集合,则=()A. B. C. D.R6.过双曲线的右焦点F作双曲线C的一条弦AB,且,若以AB为直径的圆经过双曲线C的左顶点,则双曲线C的离心率为()A. B. C.2 D.7.下列函数中,在区间上为减函数的是()A. B. C. D.8.已知不同直线、与不同平面、,且,,则下列说法中正确的是()A.若,则 B.若,则C.若,则 D.若,则9.设函数,则,的大致图象大致是的()A. B.C. D.10.中国古典乐器一般按“八音”分类.这是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于《周礼·春官·大师》,分为“金、石、土、革、丝、木、匏(páo)、竹”八音,其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器.现从“八音”中任取不同的“两音”,则含有打击乐器的概率为()A. B. C. D.11.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为()A. B. C. D.12.对于函数,若满足,则称为函数的一对“线性对称点”.若实数与和与为函数的两对“线性对称点”,则的最大值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数若关于的不等式的解集是,则的值为_____.14.函数与的图象上存在关于轴的对称点,则实数的取值范围为______.15.《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(""表示一根阳线,""表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为_______.16.已知△的三个内角为,,,且,,成等差数列,则的最小值为__________,最大值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线的参数方程为(,为参数),曲线的极坐标方程为.(1)将曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;(2)若直线经过点,求直线被曲线截得的线段的长.18.(12分)如图,D是在△ABC边AC上的一点,△BCD面积是△ABD面积的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求边AC的长.19.(12分)新高考,取消文理科,实行“”,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在称为中青年,年龄在称为中老年),并把调查结果制成下表:年龄(岁)频数515101055了解4126521(1)分别估计中青年和中老年对新高考了解的概率;(2)请根据上表完成下面列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?了解新高考不了解新高考总计中青年中老年总计附:.0.0500.0100.0013.8416.63510.828(3)若从年龄在的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为,求的分布列以及.20.(12分)为调研高中生的作文水平.在某市普通高中的某次联考中,参考的文科生与理科生人数之比为,且成绩分布在的范围内,规定分数在50以上(含50)的作文被评为“优秀作文”,按文理科用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图,如图所示.其中构成以2为公比的等比数列.(1)求的值;(2)填写下面列联表,能否在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文理科”有关?文科生理科生合计获奖6不获奖合计400(3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为,求的分布列及数学期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821.(12分)在平面直角坐标系xOy中,曲线的参数方程为(,为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点M对应的参数,射线与曲线交于点.(1)求曲线,的直角坐标方程;(2)若点A,B为曲线上的两个点且,求的值.22.(10分)如图所示,在四面体中,,平面平面,,且.(1)证明:平面;(2)设为棱的中点,当四面体的体积取得最大值时,求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
利用诱导公式、特殊角的三角函数值,结合对数运算,求得所求表达式的值.【详解】原式.故选:A【点睛】本小题主要考查诱导公式,考查对数运算,属于基础题.2、C【解析】
由等差数列通项公式得,求出,再利用等差数列前项和公式能求出.【详解】正项等差数列的前项和,,,解得或(舍),,故选C.【点睛】本题主要考查等差数列的性质与求和公式,属于中档题.解等差数列问题要注意应用等差数列的性质()与前项和的关系.3、A【解析】
根据正切函数的图象求出A、B两点的坐标,再求出向量的坐标,根据向量数量积的坐标运算求出结果.【详解】由图象得,令=0,即=kπ,k=0时解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故选:A.【点睛】本题考查正切函数的图象,平面向量数量积的运算,属于综合题,但是难度不大,解题关键是利用图象与正切函数图象求出坐标,再根据向量数量积的坐标运算可得结果,属于简单题.4、C【解析】
计算得到Ac,bca【详解】双曲线的一条渐近线方程为y=bax,A故Ac,bca,Fc,0,故Mc,故选:C.【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.5、D【解析】试题分析:由题,,,选D考点:集合的运算6、C【解析】
由得F是弦AB的中点.进而得AB垂直于x轴,得,再结合关系求解即可【详解】因为,所以F是弦AB的中点.且AB垂直于x轴.因为以AB为直径的圆经过双曲线C的左顶点,所以,即,则,故.故选:C【点睛】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题.7、C【解析】
利用基本初等函数的单调性判断各选项中函数在区间上的单调性,进而可得出结果.【详解】对于A选项,函数在区间上为增函数;对于B选项,函数在区间上为增函数;对于C选项,函数在区间上为减函数;对于D选项,函数在区间上为增函数.故选:C.【点睛】本题考查函数在区间上单调性的判断,熟悉一些常见的基本初等函数的单调性是判断的关键,属于基础题.8、C【解析】
根据空间中平行关系、垂直关系的相关判定和性质可依次判断各个选项得到结果.【详解】对于,若,则可能为平行或异面直线,错误;对于,若,则可能为平行、相交或异面直线,错误;对于,若,且,由面面垂直的判定定理可知,正确;对于,若,只有当垂直于的交线时才有,错误.故选:.【点睛】本题考查空间中线面关系、面面关系相关命题的辨析,关键是熟练掌握空间中的平行关系与垂直关系的相关命题.9、B【解析】
采用排除法:通过判断函数的奇偶性排除选项A;通过判断特殊点的函数值符号排除选项D和选项C即可求解.【详解】对于选项A:由题意知,函数的定义域为,其关于原点对称,因为,所以函数为奇函数,其图象关于原点对称,故选A排除;对于选项D:因为,故选项D排除;对于选项C:因为,故选项C排除;故选:B【点睛】本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.10、B【解析】
分别求得所有基本事件个数和满足题意的基本事件个数,根据古典概型概率公式可求得结果.【详解】从“八音”中任取不同的“两音”共有种取法;“两音”中含有打击乐器的取法共有种取法;所求概率.故选:.【点睛】本题考查古典概型概率问题的求解,关键是能够利用组合的知识求得基本事件总数和满足题意的基本事件个数.11、B【解析】
根据题意表示出各位上的数字所对应的算筹即可得答案.【详解】解:根据题意可得,各个数码的筹式需要纵横相间,个位,百位,万位用纵式表示;十位,千位,十万位用横式表示,用算筹表示应为:纵5横6纵8横4纵6,从题目中所给出的信息找出对应算筹表示为中的.故选:.【点睛】本题主要考查学生的合情推理与演绎推理,属于基础题.12、D【解析】
根据已知有,可得,只需求出的最小值,根据,利用基本不等式,得到的最小值,即可得出结论.【详解】依题意知,与为函数的“线性对称点”,所以,故(当且仅当时取等号).又与为函数的“线性对称点,所以,所以,从而的最大值为.故选:D.【点睛】本题以新定义为背景,考查指数函数的运算和图像性质、基本不等式,理解新定义含义,正确求出的表达式是解题的关键,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据题意可知的两根为,再根据解集的区间端点得出参数的关系,再求解即可.【详解】解:因为函数,关于的不等式的解集是的两根为:和;所以有:且;且;;故答案为:【点睛】本题主要考查了不等式的解集与参数之间的关系,属于基础题.14、【解析】
先求得与关于轴对称的函数,将问题转化为与的图象有交点,即方程有解.对分成三种情况进行分类讨论,由此求得实数的取值范围.【详解】因为关于轴对称的函数为,因为函数与的图象上存在关于轴的对称点,所以与的图象有交点,方程有解.时符合题意.时转化为有解,即,的图象有交点,是过定点的直线,其斜率为,若,则函数与的图象必有交点,满足题意;若,设,相切时,切点的坐标为,则,解得,切线斜率为,由图可知,当,即时,,的图象有交点,此时,与的图象有交点,函数与的图象上存在关于轴的对称点,综上可得,实数的取值范围为.故答案为:【点睛】本小题主要考查利用导数求解函数的零点以及对称性,函数与方程等基础知识,考查学生分析问题,解决问题的能力,推理与运算求解能力,转化与化归思想和应用意识.15、【解析】
观察八卦中阴线和阳线的情况为3线全为阳线或全为阴线各一个,还有6个是1阴2阳和1阳2阴各3个。抽取的两卦中共2阳4阴的所有可能情况是一卦全阴、另一卦2阳1阴,或两卦全是1阳2阴。【详解】八卦中阴线和阳线的情况为3线全为阳线的一个,全为阴线的一个,1阴2阳的3个,1阳2阴的3个。抽取的两卦中共2阳4阴的所有可能情况是一卦全阴、另一卦2阳1阴,或两卦全是1阳2阴。∴从8个卦中任取2卦,共有种可能,两卦中共2阳4阴的情况有,所求概率为。故答案为:。【点睛】本题考查古典概型,解题关键是确定基本事件的个数。本题不能受八卦影响,我们关心的是八卦中阴线和阳线的条数,这样才能正确地确定基本事件的个数。16、【解析】
根据正弦定理可得,利用余弦定理以及均值不等式,可得角的范围,然后构造函数,利用导数,研究函数性质,可得结果.【详解】由,,成等差数列所以所以又化简可得当且仅当时,取等号又,所以令,则当,即时,当,即时,则在递增,在递减所以由,所以所以的最小值为最大值为故答案为:,【点睛】本题考查等差数列、正弦定理、余弦定理,还考查了不等式、导数的综合应用,难点在于根据余弦定理以及不等式求出,考验分析能力以及逻辑思维能力,属难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)曲线表示的是焦点为,准线为的抛物线;(2)8.【解析】试题分析:(1)将曲线的极坐标方程为两边同时乘以,利用极坐标与直角坐标之间的关系即可得出其直角坐标方程;(2)由直线经过点,可得的值,再将直线的参数方程代入曲线的标准方程,由直线参数方程的几何意义可得直线被曲线截得的线段的长.试题解析:(1)由可得,即,∴曲线表示的是焦点为,准线为的抛物线.(2)将代入,得,∴,∵,∴,∴直线的参数方程为(为参数).将直线的参数方程代入得,由直线参数方程的几何意义可知,.18、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)利用三角形面积公式以及并结合正弦定理,可得结果.(Ⅱ)根据,可得,然后使用余弦定理,可得结果.【详解】(Ⅰ),所以所以;(Ⅱ),所以,所以,,所以,所以边.【点睛】本题考查三角形面积公式,正弦定理以及余弦定理的应用,关键在于识记公式,属中档题.19、(1);(2)见解析,有95%的把握判断了解新高考与年龄(中青年、中老年)有关联;(3)分布列见解析,.【解析】
(1)分别求出中青年、中老年对高考了解的频数,即可求出概率;(2)根据数据列出列联表,求出的观测值,对照表格,即可得出结论;(3)年龄在的被调查者共5人,其中了解新高考的有2人,可能取值为0,1,2,分别求出概率,列出随机变量分布列,根据期望公式即可求解.【详解】(1)由题中数据可知,中青年对新高考了解的概率,中老年对新高考了解的概率.(2)列联表如图所示了解新高考不了解新高考总计中青年22830老年81220总计302050,所以有95%的把握判断了解新高考与年龄(中青年、中老年)有关联.(3)年龄在的被调查者共5人,其中了解新高考的有2人,则抽取的3人中了解新高考的人数可能取值为0,1,2,则;;.所以的分布列为012.【点睛】本题考查概率、独立性检验及随机变量分布列和期望,考查计算求解能力,属于基础题.20、(1),,.(2)填表见解析;在犯错误的概率不超过0.01的情况下,不能认为“获得优秀作文”与“学生的文理科”有关(3)详见解析【解析】
(1)根据频率分步直方图和构成以2为公比的等比数列,即可得解;(2)由频率分步直方图算出相应的频数即可填写列联表,再用的计算公式运算即可;(3)获奖的概率为,随机变量,再根据二项分布即可求出其分布列与期望.【详解】解:(1)由频率分布直方图可知,,因为构成以2为公比的等比数列,所以,解得,所以,.故,,.(2)获奖的人数为人,因为参考的文科生与理科生人数之比为,所以400人中文科生的数量为,理科生的数量为.由表可知,获奖的文科生有6人,所以获奖的理科生有人,不获奖的文科生有人.于是可以得到列联表如下:文科生理科生合计获奖61420不获奖74306380合计80320400所以在犯错误的概率不超过0.01的情况下,不能认为“获得优秀作文”与“学生的文理科”有关.(3)由(2)可知,获奖的概率为,的可能取值为0,1,2,,,,分布列如下:012数学期望为.【点睛】本题考查频率分布直方图、统计案例和离散型随机变量的分布列与期望,考查学生的阅读理解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年北京c1客运从业资格证考试题库
- 2024年度智能家居定制设计与安装合同
- 2024年西安客运从业资格证考什么题型好
- 2024年度融资租赁合同标的及租金计算
- 2024年凉山州道路旅客运输考卷
- 2024年运城驾驶员货运从业资格证考试题
- 2024年池州客运从业资格证考试题答案
- 2024年宁夏客运证考什么内容
- 2024年存款单质押借款协议范本
- 2024年南京客运资格证考试考什么
- 北京灵活就业协议书模板
- 班主任技能大赛真题及答案
- 【新教材】人教版(2024)七年级上册英语Start Unit 1 ~Unit 7全册教案
- 2024年内蒙古公共基础知识
- 2024年中考道德与法治时政热点复习:“人工智能”(含练习题及答案)
- 任务二 亲近动物丰富生命体验(名师教案)
- 22G101三维彩色立体图集
- 知道网课智慧树《文化考察(西安工程大学)》章节测试答案
- 酒店装饰装修工程现场安全文明施工方案
- 水平四 足球大单元教案打印版
- DL-T 1476-2023 电力安全工器具预防性试验规程
评论
0/150
提交评论