版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
沪科版八年级上册数学期中考试试题一、选择题。(每小题只有一个正确答案)1.点P(2,-5)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.在平面直角坐标系中,将点向上平移3个单位长度,再向左平移2个单位长度,得到点,则点的坐标是()A. B. C. D.3.一个正比例函数的图象经过(2,-1),则它的表达式为A.y=-2x B.y=2x C. D.4.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A. B. C. D.5.下列命题中,是假命题的是()A.对顶角相等B.同旁内角互补C.两点确定一条直线D.角平分线上的点到这个角的两边的距离相等6.将一副三角板按图中方式叠放,则角α等于()A.30° B.45° C.60° D.75°7.平面立角坐标系中,点,,经过点A的直线轴,点C是直线a上的一个动点,当线段BC的长度最短时,点C的坐标为()A.(0,-1) B.(-1,-2) C.(-2,-1) D.(2,3)8.一个三角形的两边长分别为4和2,则该三角形的周长可能是A.6 B.7 C.11 D.129.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时 B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇 D.甲到B地比乙到A地早小时10.直线l1:y=kx+b与直线l2:y=bx+k在同一坐标系中的大致位置是()A.B.C.D.二、填空题11.点A(﹣3,0)关于y轴的对称点的坐标是__.12.点P(x-2,x+3)在第一象限,则x的取值范围是___.13.函数中,自变量x的取值范围是_______.14.已知直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),则方程组的解是_____.三、解答题15.已知:一次函数y=kx+b的图象经过M(0,2),(1,3)两点.⑴求k,b的值;⑵若一次函数y=kx+b的图象与x轴交点为A(a,0),求a的值.16.如图,在平面直角坐标系中,直线与直线相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求PAB的面积;(3)请把图象中直线在直线上方的部分描黑加粗,并写出此时自变量x的取值范围.17.如图,已知△ABE≌△ACD.(1)如果BE=6,DE=2,求BC的长;(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度数.18.周末,小明骑自行车从家里出发到野外郊游.从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家1小时50分钟,妈妈驾车沿相同路线前往湖光岩,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上小明,求点C的坐标和妈妈驾车的速度.19.如图①,已知线段AB,CD相交于点O,连接AD,CB,我们把形如图①的图形称之为“8字形”.如图②,在图①的条件下,∠DAB和∠BCD的角平分线AP和CP相交于点P,并且与CD,AB分别相交于点M,N,试解答下列问题:(1)在图①中,请直接写出∠A,∠B,∠C,∠D之间的数量关系;(2)在图②中,若∠D=40°,∠B=36°,试求∠P的度数;(3)如果图②中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D,∠B之间存在着怎样的数量关系(直接写出结论即可).20.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,);(2)求△ABC的面积;(3)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,画出△A′B′C′,写出A′、B′、C′三个点坐标.21.已知直线l平行于直线,且经过点.(1)求直线l的解析式;(2)试说明点是否在直线l上.22.如图,已知AD,AE分别是△ABC的高和中线,AB=3cm,AC=4cm,BC=5cm,∠CAB=90°,求:(1)AD的长;(2)△ACE和△ABE的周长的差.23.阅读理解:在平面直角坐标系中,对于任意两点与的“非常距离”,给出如下定义:若,则点与点的“非常距离”为;若,则点与点的“非常距离”为.例如:点,点,因为,所以点与点的“非常距离”为,也就是图1中线段与线段长度的较大值(点为垂直于轴的直线与垂直于轴的直线的交点).(1)已知点,为轴上的一个动点.①若点,则点与点的“非常距离”为______;②若点与点的“非常距离”为2,则点的坐标为______;③直接写出点与点的“非常距离”的最小值______;(2)已知点,点是直线上的一个动点,如图2,求点与点“非常距离”的最小值及相应的点的坐标.参考答案1.D【分析】根据各象限内点的坐标特征解答即可.【详解】解:点P(2,-5)所在的象限是第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.A【分析】根据直角坐标系中点的平移,将点A向上平移3个单位就是给纵坐标加3,向左平移2个单位就是给横坐标减2,计算即可.【详解】解:∵将点向上平移3个单位长度,再向左平移2个单位长度,得到点,∴点的横坐标为,纵坐标为,∴的坐标为.故选A.【点睛】本题只要考查点在直角坐标系中的平移,向上移动纵坐标增加,向下移动纵坐标减小,向左移动横坐标减小,向右移动横坐标增加.3.C【分析】设该正比例函数的解析式为,再把点代入求出的值即可.【详解】设该正比例函数的解析式为,正比例函数的图象经过点,,解得,这个正比例函数的表达式是.故选.【点睛】考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.4.D【分析】根据点到坐标轴的距离及点所在的象限解答即可.【详解】设点M的坐标为(x,y),∵点M到x轴的距离为4,∴,∴,∵点M到y轴的距离为5,∴,∴,∵点M在第四象限内,∴x=5,y=-4,即点M的坐标为(5,-4)故选:D.【点睛】此题考查平面直角坐标系中点到坐标轴的距离,象限内点的坐标的符号特点.5.B【详解】试题分析:A.对顶角相等,所以A选项为真命题;B.两直线平行,同旁内角互补,所以B选项为假命题;C.两点确定一条直线,所以C选项为真命题;D.角平分线上的点到这个角的两边的距离相等,所以D选项为真命题.故选B.考点:命题与定理.6.D【分析】利用两直线平行,内错角相等和三角形的一个外角等于与它不相邻的两个内角的和计算.【详解】如图,根据两直线平行,内错角相等,∴∠1=45°,根据三角形的一个外角等于与它不相邻的两个内角的和,∴∠α=∠1+30°=75°.故选D.7.D【分析】根据经过点A的直线a∥x轴,可知点C的纵坐标与点A的纵坐标相等,可设点C的坐标(x,3),根据点到直线垂线段最短,当BC⊥a时,点C的横坐标与点B的横坐标相等,即可得出答案.【详解】解:∵a∥x轴,点C是直线a上的一个动点,点A(2,3),∴设点C(x,3),∵当BC⊥a时,BC的长度最短,点B(2,1),∴x=2,∴点C的坐标为(2,3).故选:D.【点睛】本题主要考查了平面直角坐标系中点的特征和点到直线垂线段最短.8.C【分析】先求出三角形第三边的取值范围,进而求出三角形的周长取值范围,据此求出答案.【详解】设第三边的长为x,
∵三角形两边的长分别是2和4,
∴4-2<x<2+4,即2<x<6.
则三角形的周长:8<C<12,
C选项11符合题意,
故选C.【点睛】考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.9.D【详解】试题分析:A.由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B.∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:100÷1.25=80(km/h),故B选项正确,不合题意;C.由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D.由以上所求可得,乙到A地比甲到B地早:1.75﹣=(小时),故此选项错误,符合题意.故选D.考点:函数的图象.10.C【分析】根据一次函数的系数与图象的关系依次分析选项,找k、b取值范围相同的即得答案【详解】解:根据一次函数的系数与图象的关系依次分析选项可得:A、由图可得,y1=kx+b中,k<0,b<0,y2=bx+k中,b>0,k<0,b、k的取值矛盾,故本选项错误;B、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b>0,k>0,b的取值相矛盾,故本选项错误;C、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k>0,k的取值相一致,故本选项正确;D、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k<0,k的取值相矛盾,故本选项错误;故选C.【点睛】本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.11.(3,0)【详解】试题分析:因为点P(a,b)关于y轴的对称点的坐标是(-a,b),所以点A(﹣3,0)关于y轴的对称点的坐标是(3,0),故答案为(3,0)考点:关于y轴对称的点的坐标.12.x>2【详解】∵点P(x﹣2,x+3)在第一象限,∴x-2>0,x+3<0,解得:x>2,故答案是:x>213.且.【详解】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且.考点:1.函数自变量的取值范围;2.二次根式和分式有意义的条件.14.【详解】由一次函数的交点与二元一次方程组解的关系可知方程组的解是.故答案为15.⑴k,b的值分别是1和2;⑵a=-2【分析】(1)由题意得,解得;⑵由⑴得当y=0时,x=-2,【详解】解:⑴由题意得解得∴k,b的值分别是1和2⑵由⑴得∴当y=0时,x=-2,即a=-2【点睛】用待定系数法求一次函数解析式.16.(1);(2)3;(3)【分析】(1)解析式联立,解方程组即可求得交点P的坐标;
(2)求得A、B的坐标,然后根据三角形面积公式求得即可;
(3)根据图象求得即可.【详解】解:根据题意,交点的横、纵坐标是方程组的解解这个方程组,得交点的坐标为直线与轴的交点的坐标为直线与轴交点的坐标为的面积为在图象中把直线在直线上方的部分描黑加粗,图示如下:此时自变量的取值范围为
【点睛】
本题考查了两条直线平行或相交问题,两条直线的交点坐标是两条直线的解析式构成的方程组的解.17.(1)10;(2)15°【分析】(1)根据全等三角形的性质,可得出BE=CD,根据BE=6,DE=2,得出CE=4,从而得出BC的长;(2)根据全等三角形的性质可得出∠BAE=∠CAD,即可得出∠BAD=∠CAE,计算∠CAD﹣∠CAE即得出答案.【详解】解:(1)∵△ABE≌△ACD,∴BE=CD,∠BAE=∠CAD,又∵BE=6,DE=2,∴EC=DC﹣DE=BE﹣DE=4,∴BC=BE+EC=10;(2)∠CAD=∠BAC﹣∠BAD=75°﹣30°=45°,∴∠BAE=∠CAD=45°,∴∠DAE=∠BAE﹣∠BAD=45°﹣30°=15°.【点睛】本题考查了全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等.18.(1)20km/h,1小时;(2)C(,25),60km/h【分析】(1)由函数图象的数据就可以求出小明骑车的速度及在南亚所游玩的时间为1小时;(2)先根据题意求出小明从南亚所到湖光岩的时间,可得小明从家到湖光岩的路程,由路程除以时间可得妈妈的速度,继而求出点C坐标.【详解】解:(1)由题意,得小明骑车的速度为:km/h,小明在南亚所游玩的时间为:小时;(2)由题意,得小明从南亚所到湖光岩的时间为分钟小时,小明从家到湖光岩的路程为:km,妈妈驾车的速度为:km/h,点横坐标为:,∴C(,25).【点睛】本题是函数的综合题,考查了行程问题的数量关系的运用,解答时理解清楚函数图象的意义是解答此题的关键.19.(1)∠A+∠D=∠B+∠C;(2)38°;(3)2∠P=∠B+∠D【分析】(1)利用三角形的内角和定理表示出与,再根据对顶角相等可得,然后整理即可得解;(2)根据(1)的关系式求出,再根据角平分线的定义求出,然后利用“8字形”的关系式列式整理即可得解;(3)根据“8字形”用、表示出,再用、表示出,然后根据角平分线的定义可得,然后整理即可得证.【详解】解:(1)在中,,在中,,(对顶角相等),,;(2),,,,、分别是和的角平分线,,,又,;(3)根据“8字形”数量关系,,,所以,,,、分别是和的角平分线,,,,整理得,.【点睛】本题考查了三角形内角和定理,角平分线的定义,多边形的内角和定理,对顶角相等的性质,整体思想的利用是解题的关键.20.(1)A(2,﹣1)、B(4,3);(2)5;(3)图详见解析,A′(0,0)、B′(2,4)、C′(﹣1,3).【分析】(1)根据直角坐标系的特点写出对应点的坐标;(2)用△ABC所在的矩形面积减去三个小三角形的面积即可求解;(3)分别将点A、B、C先向左平移2个单位长度,再向上平移1个单位长度,得到点A′、B′、C′,然后顺次连接并写出坐标.【详解】解:(1)A(2,﹣1),B(4,3);(2)S△ABC=3×4﹣×2×4﹣×1×3﹣×3×1=5,故△ABC的面积为5;(3)所作图形如图所示:A′(0,0)、B′(2,4)、C′(﹣1,3).【点睛】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.21.(1);见详解;(2)不在,见详解.【分析】(1)设直线解析式为y=kx+b,由平行于直线,可得k=﹣3,再把点代入即可求解;(2)把点P的坐标代入(1)中的解析式即可判断.【详解】解:(1)设直线解析式为,∵平行于直线,∴k=﹣3,∴,∵过点,∴﹣3+b=3,∴b=6,∴直线l解析式是;(2)把x=2a代入得,,∴点不在直线l上.【点睛】本题主要考查一次函数,关键是根据“两条直线平行,那么它们的斜率相等”这一知识点求得函数解析式.22.(1)AD的长度为cm;(2)△ACE和△ABE的周长的差是1cm.【分析】(1)根据直角三角形的面积计算方法求解即可;(2)先按图写出两个三角形的周长,再作差计算即可.【详解】解:(1)∵∠BAC=90°,AD是边BC上的高,∴AB•AC=BC•AD,∴AD=(cm),即AD的长为cm;(2)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长﹣△ABE的周长=AC+CE+AE﹣(AB+BE+AE)=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版数学六年级下册-437用比例解决问题(2)-教学课件
- 2024至2030年液压升高机项目投资价值分析报告
- 2024至2030年中国外开窗行业投资前景及策略咨询研究报告
- 2024至2030年木工打榫机项目投资价值分析报告
- 2024至2030年天线分析仪项目投资价值分析报告
- 2024至2030年商用条码打印机项目投资价值分析报告
- 2024至2030年中国专业摄影包行业投资前景及策略咨询研究报告
- 2024至2030年2-甲砜基乙醇项目投资价值分析报告
- 2024年高压座项目可行性研究报告
- 2024年迷你型电子保险箱项目可行性研究报告
- 电缆敷设专项施工方案
- 石油测井方案与应急处置预案
- 500地形图测绘技术设计方案
- GB/T 22838.6-2024卷烟和滤棒物理性能的测定第6部分:硬度
- 2023-2024年福建高中物理会考试卷(福建会考卷)
- 广东省中山市2023-2024学年九年级上学期期末语文试题及答案
- 西方文明通论学习通超星期末考试答案章节答案2024年
- TCSF 0089-2024 城市绿地种植和管养活动碳计量指南
- 2024年专技人员公需科目考试答
- 2024年宁波城投集团第一期内部人才市场招聘高频考题难、易错点模拟试题(共500题)附带答案详解
- 2024新华社招考应届高校毕业生(高频重点提升专题训练)共500题附带答案详解
评论
0/150
提交评论