版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
01考点考情全掌握02重难点精讲03河南十年真题及全国最新真题练精讲版第一部分
河南中考考点透析第二章
方程(组)与不等式(组)第8讲
一元一次不等式(组)及其应用考点解读版本导航:人教:七下P113~133
北师:八下P36~63
华师:七下P49~70考情分析序号中考年份考点一元一次不等式(组)的解法及其解集表示一元一次不等式(组)的应用12024年不等式组的解集(5)22023年不等式解应用题(21)32022年解集(12)不等式解应用题(20)42021年不等式解应用题(21)52020年解集(12)62019年解集(12)不等式解应用题(20)序号中考年份考点一元一次不等式(组)的解法及其解集表示一元一次不等式(组)的应用72018年最小整数解(13)不等式解应用题(21)82017年解集(12)不等式解应用题(21)92016年求整数解(16)不等式解应用题(20)102015年在数轴上表示解集(5)续表命题点一一元一次不等式(组)的解法及其解集表示类型一
求一元一次不等式(组)的解集
CA.
B.
C.
D.
方法总结求不等式组的解集的一般方法1.数轴法:把不等式组中所有不等式的解集在同一条数轴上表示出来,从数轴上直观地得到公共部分(即不等式组的解集).在数轴上表示不等式解集时要注意:大于向右画,小于向左画,有等号用实心圆点,没有等号用空心圆圈.2.口诀法:同大取大,同小取小,大小小大中间找,大大小小找不到.类型二
一元一次不等式组的整数解
4方法总结求不等式组的整数解的一般方法1.求整数解的方法:先求出不等式组的解集,再把解集在数轴上表示出来,然后结合数轴确定整数解,分两种情况:①当临界点是整数时,临界点是实心,整数可取;临界点是空心,整数不可取;②当临界点不是整数时,根据不等式组的解集确定整数解.2.求最大整数解的方法:在数轴上找解集范围内位于最右边的整数解.3.求最小整数解的方法:在数轴上找解集范围内位于最左边的整数解.
1,2,3类型三
含参数的不等式(组)
B
B
12命题点二一元一次不等式(组)的应用
(1)求原计划与实际每天铺设管道各多少米.
(2)负责该工程的施工单位,按原计划对工人的工资进行了初步的预算,工人每天人均工资为300元,所有工人的工资总金额不超过18万元,该公司原计划最多应安排多少名工人施工?
考点一一元一次不等式(组)的解法及解集表示(10年8考)
A
CA.
B.
C.
D.
考点二一元一次不等式的应用(10年7考)6.(2023·河南)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南农业大学《心理学研究方法与设计》2021-2022学年第一学期期末试卷
- 湖南科技学院《操作系统》2023-2024学年第一学期期末试卷
- 2024年中国立式方形计量罐市场调查研究报告
- 2024至2030年中国黄色氧化汞行业投资前景及策略咨询研究报告
- 2024至2030年中国过滤系统行业投资前景及策略咨询研究报告
- 2024至2030年中国植物粉碎机行业投资前景及策略咨询研究报告
- 2024至2030年铁锌钙粉项目投资价值分析报告
- 2024至2030年纱线多用测湿仪项目投资价值分析报告
- 2024至2030年中国打空膜行业投资前景及策略咨询研究报告
- 2024至2030年牛仔布料项目投资价值分析报告
- 了解学前儿童科学领域核心经验
- 天津市年中考数学题型专项训练:旋转问题含答案名师(完整版)资料
- 临床研究项目无任何经费资助声明模板
- 萃取操作流程
- 2023福建中考道德与法治答题卡word版可编辑
- 天文学导论智慧树知到答案章节测试2023年中国科学技术大学
- 12K101-3 离心通风机安装
- 羽毛球智慧树知到答案章节测试2023年华东交通大学
- 煤矿1304采煤工作面瓦斯抽采设计
- (部编版)六年级上册语文多音字归类
- 甲苯废气处理工艺设计-大气污染处理设计课程
评论
0/150
提交评论