四川省自贡市普高2025届高考数学押题试卷含解析_第1页
四川省自贡市普高2025届高考数学押题试卷含解析_第2页
四川省自贡市普高2025届高考数学押题试卷含解析_第3页
四川省自贡市普高2025届高考数学押题试卷含解析_第4页
四川省自贡市普高2025届高考数学押题试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省自贡市普高2025届高考数学押题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,22.在中,内角A,B,C所对的边分别为a,b,c,且.若,的面积为,则()A.5 B. C.4 D.163.已知数列是公差为的等差数列,且成等比数列,则()A.4 B.3 C.2 D.14.已知展开式中第三项的二项式系数与第四项的二项式系数相等,,若,则的值为()A.1 B.-1 C.8l D.-815.已知二次函数的部分图象如图所示,则函数的零点所在区间为()A. B. C. D.6.已知直线和平面,若,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.不充分不必要7.如图,已知平面,,、是直线上的两点,、是平面内的两点,且,,,,.是平面上的一动点,且直线,与平面所成角相等,则二面角的余弦值的最小值是()A. B. C. D.8.已知实数,,函数在上单调递增,则实数的取值范围是()A. B. C. D.9.已知直四棱柱的所有棱长相等,,则直线与平面所成角的正切值等于()A. B. C. D.10.若,满足约束条件,则的取值范围为()A. B. C. D.11.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长与高,计算其体积的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的圆周率近似取为()A. B. C. D.12.已知函数,若关于的方程有4个不同的实数根,则实数的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,,则____________.14.如图,直三棱柱中,,,,P是的中点,则三棱锥的体积为________.15.设P为有公共焦点的椭圆与双曲线的一个交点,且,椭圆的离心率为,双曲线的离心率为,若,则______________.16.已知函数,,若函数有3个不同的零点x1,x2,x3(x1<x2<x3),则的取值范围是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若,求不等式的解集;(2)若“,”为假命题,求的取值范围.18.(12分)在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系;曲线C1的普通方程为(x-1)2+y2=1,曲线C2的参数方程为(θ为参数).(Ⅰ)求曲线C1和C2的极坐标方程:(Ⅱ)设射线θ=(ρ>0)分别与曲线C1和C2相交于A,B两点,求|AB|的值.19.(12分)如图,在四棱锥中,底面为菱形,底面,.(1)求证:平面;(2)若直线与平面所成的角为,求平面与平面所成锐二面角的余弦值.20.(12分)已知曲线,直线:(为参数).(I)写出曲线的参数方程,直线的普通方程;(II)过曲线上任意一点作与夹角为的直线,交于点,的最大值与最小值.21.(12分)设函数,,其中,为正实数.(1)若的图象总在函数的图象的下方,求实数的取值范围;(2)设,证明:对任意,都有.22.(10分)如图,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=AA1,M,N分别是AC,B1C1的中点.求证:(1)MN∥平面ABB1A1;(2)AN⊥A1B.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

先求出集合U,再根据补集的定义求出结果即可.【详解】由题意得U=x|∵A=1,2∴CU故选C.【点睛】本题考查集合补集的运算,求解的关键是正确求出集合U和熟悉补集的定义,属于简单题.2、C【解析】

根据正弦定理边化角以及三角函数公式可得,再根据面积公式可求得,再代入余弦定理求解即可.【详解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故选:C【点睛】本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题.3、A【解析】

根据等差数列和等比数列公式直接计算得到答案.【详解】由成等比数列得,即,已知,解得.故选:.【点睛】本题考查了等差数列,等比数列的基本量的计算,意在考查学生的计算能力.4、B【解析】

根据二项式系数的性质,可求得,再通过赋值求得以及结果即可.【详解】因为展开式中第三项的二项式系数与第四项的二项式系数相等,故可得,令,故可得,又因为,令,则,解得令,则.故选:B.【点睛】本题考查二项式系数的性质,以及通过赋值法求系数之和,属综合基础题.5、B【解析】由函数f(x)的图象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上单调递增,又g(0)=1-b<0,g(1)=e+2-b>0,根据函数的零点存在性定理可知,函数g(x)的零点所在的区间是(0,1),故选B.6、B【解析】

由线面关系可知,不能确定与平面的关系,若一定可得,即可求出答案.【详解】,不能确定还是,,当时,存在,,由又可得,所以“”是“”的必要不充分条件,故选:B【点睛】本题主要考查了必要不充分条件,线面垂直,线线垂直的判定,属于中档题.7、B【解析】

为所求的二面角的平面角,由得出,求出在内的轨迹,根据轨迹的特点求出的最大值对应的余弦值【详解】,,,,同理为直线与平面所成的角,为直线与平面所成的角,又,在平面内,以为轴,以的中垂线为轴建立平面直角坐标系则,设,整理可得:在内的轨迹为为圆心,以为半径的上半圆平面平面,,为二面角的平面角,当与圆相切时,最大,取得最小值此时故选【点睛】本题主要考查了二面角的平面角及其求法,方法有:定义法、三垂线定理及其逆定理、找公垂面法、射影公式、向量法等,依据题目选择方法求出结果.8、D【解析】

根据题意,对于函数分2段分析:当,由指数函数的性质分析可得①,当,由导数与函数单调性的关系可得,在上恒成立,变形可得②,再结合函数的单调性,分析可得③,联立三个式子,分析可得答案.【详解】解:根据题意,函数在上单调递增,

当,若为增函数,则①,

当,若为增函数,必有在上恒成立,

变形可得:,

又由,可得在上单调递减,则,

若在上恒成立,则有②,

若函数在上单调递增,左边一段函数的最大值不能大于右边一段函数的最小值,则需有,③

联立①②③可得:.

故选:D.【点睛】本题考查函数单调性的性质以及应用,注意分段函数单调性的性质.9、D【解析】

以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,建立空间直角坐标系.求解平面的法向量,利用线面角的向量公式即得解.【详解】如图所示的直四棱柱,,取中点,以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,建立空间直角坐标系.设,则,.设平面的法向量为,则取,得.设直线与平面所成角为,则,,∴直线与平面所成角的正切值等于故选:D【点睛】本题考查了向量法求解线面角,考查了学生空间想象,逻辑推理,数学运算的能力,属于中档题.10、B【解析】

根据约束条件作出可行域,找到使直线的截距取最值得点,相应坐标代入即可求得取值范围.【详解】画出可行域,如图所示:由图可知,当直线经过点时,取得最小值-5;经过点时,取得最大值5,故.故选:B【点睛】本题考查根据线性规划求范围,属于基础题.11、C【解析】

将圆锥的体积用两种方式表达,即,解出即可.【详解】设圆锥底面圆的半径为r,则,又,故,所以,.故选:C.【点睛】本题利用古代数学问题考查圆锥体积计算的实际应用,考查学生的运算求解能力、创新能力.12、C【解析】

求导,先求出在单增,在单减,且知设,则方程有4个不同的实数根等价于方程在上有两个不同的实数根,再利用一元二次方程根的分布条件列不等式组求解可得.【详解】依题意,,令,解得,,故当时,,当,,且,故方程在上有两个不同的实数根,故,解得.故选:C.【点睛】本题考查确定函数零点或方程根个数.其方法:(1)构造法:构造函数(易求,可解),转化为确定的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出的图象草图,数形结合求解;(2)定理法:先用零点存在性定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由于,,则.14、【解析】

证明平面,于是,利用三棱锥的体积公式即可求解.【详解】平面,平面,,又.平面,是的中点,.

故答案为:【点睛】本题考查了线面垂直的判定定理、三棱锥的体积公式,属于基础题.15、【解析】设根据椭圆的几何性质可得,根据双曲线的几何性质可得,,即故答案为16、【解析】

先根据题意,求出的解得或,然后求出f(x)的导函数,求其单调性以及最值,在根据题意求出函数有3个不同的零点x1,x2,x3(x1<x2<x3),分情况讨论求出的取值范围.【详解】解:令t=f(x),函数有3个不同的零点,即+m=0有两个不同的解,解之得即或因为的导函数,令,解得x>e,,解得0<x<e,可得f(x)在(0,e)递增,在递减;f(x)的最大值为,且且f(1)=0;要使函数有3个不同的零点,(1)有两个不同的解,此时有一个解;(2)有两个不同的解,此时有一个解当有两个不同的解,此时有一个解,此时,不符合题意;或是不符合题意;所以只能是解得,此时=-m,此时有两个不同的解,此时有一个解此时,不符合题意;或是不符合题意;所以只能是解得,此时=,综上:的取值范围是故答案为【点睛】本题主要考查了函数与导函数的综合,考查到了函数的零点,导函数的应用,以及数形结合的思想、分类讨论的思想,属于综合性极强的题目,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1))当时,将函数写成分段函数,即可求得不等式的解集.(2)根据原命题是假命题,这命题的否定为真命题,即“,”为真命题,只需满足即可.【详解】解:(1)当时,由,得.故不等式的解集为.(2)因为“,”为假命题,所以“,”为真命题,所以.因为,所以,则,所以,即,解得,即的取值范围为.【点睛】本题考查绝对值不等式的解法,以及绝对值三角不等式,属于基础题.18、(Ⅰ),;(Ⅱ)【解析】

(Ⅰ)根据,可得曲线C1的极坐标方程,然后先计算曲线C2的普通方程,最后根据极坐标与直角坐标的转化公式,可得结果.(Ⅱ)将射线θ=分别与曲线C1和C2极坐标方程联立,可得A,B的极坐标,然后简单计算,可得结果.【详解】(Ⅰ)由所以曲线的极坐标方程为,曲线的普通方程为则曲线的极坐标方程为(Ⅱ)令,则,,则,即,所以,,故.【点睛】本题考查极坐标方程和参数方程与直角坐标方程的转化,以及极坐标方程中的几何意义,属基础题.19、(1)证明见解析(2)【解析】

(1)由底面为菱形,得,再由底面,可得,结合线面垂直的判定可得平面;(2)以点为坐标原点,以所在直线及过点且垂直于平面的直线分别为轴建立空间直角坐标系,分别求出平面与平面的一个法向量,由两法向量所成角的余弦值可得平面与平面所成锐二面角的余弦值.【详解】(1)证明:底面为菱形,,底面,平面,又,平面,平面;(2)解:,,为等边三角形,.底面,是直线与平面所成的角为,在中,由,解得.如图,以点为坐标原点,以所在直线及过点且垂直于平面的直线分别为轴建立空间直角坐标系.则,,,,.,,,.设平面与平面的一个法向量分别为,.由,取,得;由,取,得..平面与平面所成锐二面角的余弦值为.【点睛】本题考查直线与平面垂直的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,属于中档题.20、(I);(II)最大值为,最小值为.【解析】试题分析:(I)由椭圆的标准方程设,得椭圆的参数方程为,消去参数即得直线的普通方程为;(II)关键是处理好与角的关系.过点作与垂直的直线,垂足为,则在中,,故将的最大值与最小值问题转化为椭圆上的点,到定直线的最大值与最小值问题处理.试题解析:(I)曲线C的参数方程为(为参数).直线的普通方程为.(II)曲线C上任意一点到的距离为.则.其中为锐角,且.当时,取到最大值,最大值为.当时,取到最小值,最小值为.【考点定位】1、椭圆和直线的参数方程;2、点到直线的距离公式;3、解直角三角形.21、(1)(2)证明见解析【解析】

(1)据题意可得在区间上恒成立,利用导数讨论函数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论