




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届重庆市聚奎中学高三下学期第五次调研考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数(其中是自然对数的底数)的大致图像为()A. B. C. D.2.如下的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为176,320,则输出的a为()A.16 B.18 C.20 D.153.若圆锥轴截面面积为,母线与底面所成角为60°,则体积为()A. B. C. D.4.已知抛物线:()的焦点为,为该抛物线上一点,以为圆心的圆与的准线相切于点,,则抛物线方程为()A. B. C. D.5.等比数列的前项和为,若,,,,则()A. B. C. D.6.已知函数,关于x的方程f(x)=a存在四个不同实数根,则实数a的取值范围是()A.(0,1)∪(1,e) B.C. D.(0,1)7.已知直线与圆有公共点,则的最大值为()A.4 B. C. D.8.中,点在边上,平分,若,,,,则()A. B. C. D.9.已知椭圆+=1(a>b>0)与直线交于A,B两点,焦点F(0,-c),其中c为半焦距,若△ABF是直角三角形,则该椭圆的离心率为()A. B. C. D.10.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有()A.12种 B.18种 C.24种 D.64种11.陀螺是中国民间最早的娱乐工具,也称陀罗.如图,网格纸上小正方形的边长为,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为()A. B.C. D.12.若集合,,则=()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数在区间内有且仅有两个零点,则实数的取值范围是_____.14.设实数满足约束条件,则的最大值为______.15.已知向量,,若向量与向量平行,则实数___________.16.已知向量,,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,直线为曲线的切线(为自然对数的底数).(1)求实数的值;(2)用表示中的最小值,设函数,若函数为增函数,求实数的取值范围.18.(12分)在直角坐标系中,曲线的标准方程为.以原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求直线的直角坐标方程;(2)若点在曲线上,点在直线上,求的最小值.19.(12分)在平面直角坐标系xOy中,曲线C的参数方程为(为参数).以原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系.(1)设直线l的极坐标方程为,若直线l与曲线C交于两点A.B,求AB的长;(2)设M、N是曲线C上的两点,若,求面积的最大值.20.(12分)如图,在三棱柱中,,,,为的中点,且.(1)求证:平面;(2)求锐二面角的余弦值.21.(12分)已知直线是曲线的切线.(1)求函数的解析式,(2)若,证明:对于任意,有且仅有一个零点.22.(10分)管道清洁棒是通过在管道内释放清洁剂来清洁管道内壁的工具,现欲用清洁棒清洁一个如图1所示的圆管直角弯头的内壁,其纵截面如图2所示,一根长度为的清洁棒在弯头内恰好处于位置(图中给出的数据是圆管内壁直径大小,).(1)请用角表示清洁棒的长;(2)若想让清洁棒通过该弯头,清洁下一段圆管,求能通过该弯头的清洁棒的最大长度.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题意得,函数点定义域为且,所以定义域关于原点对称,且,所以函数为奇函数,图象关于原点对称,故选D.2、A【解析】
根据题意可知最后计算的结果为的最大公约数.【详解】输入的a,b分别为,,根据流程图可知最后计算的结果为的最大公约数,按流程图计算,,,,,,,易得176和320的最大公约数为16,故选:A.【点睛】本题考查的是利用更相减损术求两个数的最大公约数,难度较易.3、D【解析】
设圆锥底面圆的半径为,由轴截面面积为可得半径,再利用圆锥体积公式计算即可.【详解】设圆锥底面圆的半径为,由已知,,解得,所以圆锥的体积.故选:D【点睛】本题考查圆锥的体积的计算,涉及到圆锥的定义,是一道容易题.4、C【解析】
根据抛物线方程求得点的坐标,根据轴、列方程,解方程求得的值.【详解】不妨设在第一象限,由于在抛物线上,所以,由于以为圆心的圆与的准线相切于点,根据抛物线的定义可知,、轴,且.由于,所以直线的倾斜角为,所以,解得,或(由于,故舍去).所以抛物线的方程为.故选:C【点睛】本小题主要考查抛物线的定义,考查直线的斜率,考查数形结合的数学思想方法,属于中档题.5、D【解析】试题分析:由于在等比数列中,由可得:,又因为,所以有:是方程的二实根,又,,所以,故解得:,从而公比;那么,故选D.考点:等比数列.6、D【解析】
原问题转化为有四个不同的实根,换元处理令t,对g(t)进行零点个数讨论.【详解】由题意,a>2,令t,则f(x)=a⇔⇔⇔⇔.记g(t).当t<2时,g(t)=2ln(﹣t)(t)单调递减,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有两个不等于2的不等根.则⇔,记h(t)(t>2且t≠2),则h′(t).令φ(t),则φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,则h(t)在(2,2)上单调递增,在(2,+∞)上单调递减.由,可得,即a<2.∴实数a的取值范围是(2,2).故选:D.【点睛】此题考查方程的根与函数零点问题,关键在于等价转化,将问题转化为通过导函数讨论函数单调性解决问题.7、C【解析】
根据表示圆和直线与圆有公共点,得到,再利用二次函数的性质求解.【详解】因为表示圆,所以,解得,因为直线与圆有公共点,所以圆心到直线的距离,即,解得,此时,因为,在递增,所以的最大值.故选:C【点睛】本题主要考查圆的方程,直线与圆的位置关系以及二次函数的性质,还考查了运算求解的能力,属于中档题.8、B【解析】
由平分,根据三角形内角平分线定理可得,再根据平面向量的加减法运算即得答案.【详解】平分,根据三角形内角平分线定理可得,又,,,,..故选:.【点睛】本题主要考查平面向量的线性运算,属于基础题.9、A【解析】
联立直线与椭圆方程求出交点A,B两点,利用平面向量垂直的坐标表示得到关于的关系式,解方程求解即可.【详解】联立方程,解方程可得或,不妨设A(0,a),B(-b,0),由题意可知,·=0,因为,,由平面向量垂直的坐标表示可得,,因为,所以a2-c2=ac,两边同时除以可得,,解得e=或(舍去),所以该椭圆的离心率为.故选:A【点睛】本题考查椭圆方程及其性质、离心率的求解、平面向量垂直的坐标表示;考查运算求解能力和知识迁移能力;利用平面向量垂直的坐标表示得到关于的关系式是求解本题的关键;属于中档题、常考题型.10、C【解析】
根据题意,分2步进行分析:①,将4人分成3组,②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,将剩下的2组全排列,安排其他的2项工作,由分步计数原理计算可得答案.【详解】解:根据题意,分2步进行分析:①,将4人分成3组,有种分法;②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,有2种情况,将剩下的2组全排列,安排其他的2项工作,有种情况,此时有种情况,则有种不同的安排方法;故选:C.【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.11、C【解析】
画出几何体的直观图,利用三视图的数据求解几何体的表面积即可,【详解】由题意可知几何体的直观图如图:上部是底面半径为1,高为3的圆柱,下部是底面半径为2,高为2的圆锥,几何体的表面积为:,故选:C【点睛】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键.12、C【解析】试题分析:化简集合故选C.考点:集合的运算.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
对函数零点问题等价转化,分离参数讨论交点个数,数形结合求解.【详解】由题:函数在区间内有且仅有两个零点,,等价于函数恰有两个公共点,作出大致图象:要有两个交点,即,所以.故答案为:【点睛】此题考查函数零点问题,根据函数零点个数求参数的取值范围,关键在于对函数零点问题恰当变形,等价转化,数形结合求解.14、【解析】
试题分析:作出不等式组所表示的平面区域如图,当直线过点时,最大,且考点:线性规划.15、【解析】
由题可得,因为向量与向量平行,所以,解得.16、【解析】
求出,然后由模的平方转化为向量的平方,利用数量积的运算计算.【详解】由题意得,.,.,,.故答案为:.【点睛】本题考查求向量的模,掌握数量积的定义与运算律是解题基础.本题关键是用数量积的定义把模的运算转化为数量积的运算.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
试题分析:(1)先求导,然后利用导数等于求出切点的横坐标,代入两个曲线的方程,解方程组,可求得;(2)设与交点的横坐标为,利用导数求得,从而,然后利用求得的取值范围为.试题解析:(1)对求导得.设直线与曲线切于点,则,解得,所以的值为1.(2)记函数,下面考察函数的符号,对函数求导得.当时,恒成立.当时,,从而.∴在上恒成立,故在上单调递减.,∴,又曲线在上连续不间断,所以由函数的零点存在性定理及其单调性知唯一的,使.∴;,,∴,从而,∴,由函数为增函数,且曲线在上连续不断知在,上恒成立.①当时,在上恒成立,即在上恒成立,记,则,当变化时,变化情况列表如下:
3
0
极小值
∴,故“在上恒成立”只需,即.②当时,,当时,在上恒成立,综合①②知,当时,函数为增函数.故实数的取值范围是考点:函数导数与不等式.【方法点晴】函数导数问题中,和切线有关的题目非常多,我们只要把握住关键点:一个是切点,一个是斜率,切点即在原来函数图象上,也在切线上;斜率就是导数的值.根据这两点,列方程组,就能解决.本题第二问我们采用分层推进的策略,先求得的表达式,然后再求得的表达式,我们就可以利用导数这个工具来求的取值范围了.18、(1)(2)【解析】
(1)直接利用极坐标公式计算得到答案(2)设,,根据三角函数的有界性得到答案.【详解】(1)因为,所以,因为所以直线的直角坐标方程为.(2)由题意可设,则点到直线的距离.因为,所以,因为,故的最小值为.【点睛】本题考查了极坐标方程,参数方程,意在考查学生的计算能力和转化能力.19、(1);(2)1.【解析】
(1)利用参数方程、普通方程、极坐标方程间的互化公式即可;(2),,由(1)通过计算得到,即最大值为1.【详解】(1)将曲线C的参数方程化为普通方程为,即;再将,,代入上式,得,故曲线C的极坐标方程为,显然直线l与曲线C相交的两点中,必有一个为原点O,不妨设O与A重合,即.(2)不妨设,,则面积为当,即取时,.【点睛】本题考查参数方程、普通方程、极坐标方程间的互化,三角形面积的最值问题,是一道容易题.20、(1)证明见解析;(2).【解析】
(1)证明后可得平面,从而得,结合已知得线面垂直;(2)以为坐标原点,以为轴,为轴,为建立空间直角坐标系,设,写出各点坐标,求出二面角的面的法向量,由法向量夹角的余弦值得二面角的余弦值.【详解】(1)证明:因为,为中点,所以,又,,所以平面,又平面,所以,又,,所以平面.(2)由已知及(1)可知,,两两垂直,所以以为坐标原点,以为轴,为轴,为建立空间直角坐标系,设,则,,,,,.设平面的法向量,则,即,令,则;设平面的法向量,则,即,令,则,所以.故锐二面角的余弦值为.【点睛】本题考查证明线面垂直,解题时注意线面垂直与线线垂直的相互转化.考查求二面角,求空间角一般是建立空间直角坐标系,用向量法易得结论.21、(1)(2)证明见解析【解析】
(1)对函数求导,并设切点,利用点既在曲线上、又在切线上,列出方程组,解得,即可得答案;(2)当x充分小时,当x充分大时,可得至少有一个零点.再证明零点的唯一性,即对函数求导得,对分和两种情况讨论,即可得答案.【详解】(1)根据题意,,设直线与曲线相切于点.根据题意,可得,解之得,所以.(2)由(1)可知,则当x充分小时,当x充分大时,∴至少有一个零点.∵,①若,则,在上单调递增,∴有唯一零点.②若令,得有两个极值点,∵,∴,∴.∴在上单调递增,在上单调递减,在上单调递增.∴极大值为.,又,∴在(0,16)上单调递增,∴,∴有唯一零点.综上可知,对于任意,有且仅有一个零点.【点睛】本题考查导数的几何意义的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司搬迁营销活动方案
- 公司线下招募活动方案
- 公司生产策划方案
- 公司联谊文案策划方案
- 公司服装秀活动方案
- 公司职员聚餐活动方案
- 公司联谊特色活动方案
- 公司茶艺沙龙活动方案
- 公司节能减耗活动方案
- 公司植树节新颖活动方案
- 广东省广州各区2025届七下英语期末经典试题含答案
- 【政治 北京版】2025年高考招生统一考试高考真题政治试卷(真题+答案)
- 制药公司污水池管理制度
- 云硫矿业招聘试题及答案
- 集中供热工程项目可行性研究报告
- 2025年重庆市中考地理试题 (解析版)
- (2025)学习《中华人民共和国监察法》知识试题库(附含答案)
- JG/T 313-2014额定电压0.6/1kV及以下金属护套无机矿物绝缘电缆及终端
- 2025年保健按摩师资格技术及理论知识考试题库(附含答案)
- T/CSBME 050-2022宫颈液基细胞人工智能医疗器械质量要求和评价第1部分:数据集要求
- 2024年青海省囊谦县事业单位公开招聘辅警考试题带答案分析
评论
0/150
提交评论