艺考生专题讲义36 排列组合_第1页
艺考生专题讲义36 排列组合_第2页
艺考生专题讲义36 排列组合_第3页
艺考生专题讲义36 排列组合_第4页
艺考生专题讲义36 排列组合_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

考点36排列组合知识梳理一.计数原理(一)分类加法计数原理1.概念:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.特征(1)每类方法都能独立完成这件事,它是独立的、一次的,且每次得到的是最后结果,只需一种方法就可完成这件事(2)各类方法之间是互斥的、并列的、独立的(二)分步乘法计数原理1.概念:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.2.特征(1)每一步得到的只是中间结果,任何一步都不能独立完成这件事,只有各个步骤都完成了才能完成这件事(2)各步之间是相互依存的,并且既不能重复也不能遗漏二.排列、组合(一)排列组合定义排列的定义从n个不同元素中取出m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列组合的定义合成一组,叫做从n个不同元素中取出m个元素的一个组合(二)排列数、组合数的定义、公式、性质排列数组合数定义从n个不同元素中取出m(m≤n,m,n∈N*)个元素的所有不同排列的个数从n个不同元素中取出m(m≤n,m,n∈N*)个元素的所有不同组合的个数公式Aeq\o\al(m,n)=n(n-1)(n-2)…(n-m+1)=eq\f(n!,n-m!)Ceq\o\al(m,n)=eq\f(A\o\al(m,n),A\o\al(m,m))=性质Aeq\o\al(n,n)=n!,0!=1Ceq\o\al(0,n)=1,Ceq\o\al(m,n)=Ceq\o\al(n-m,n),Ceq\o\al(m,n)+Ceq\o\al(m-1,n)=Ceq\o\al(m,n+1)精讲精练题型一排列组合数的计数【例1】(1)(2024·全国高三专题练习)若,则的值为()A.60 B.70 C.120 D.140(2)(2024·全国高三专题练习)已知,则()A.11 B.12 C.13 D.14【答案】(1)D(2)B【解析】(1),解得或(舍去),.故选:D.(2)∵,∴,整理,得,;解得,或(不合题意,舍去);∴的值为12.故选:B.【举一反三】1.(2024·全国高三专题练习)已知,则()A.5 B.7 C.10 D.14【答案】B【解析】,可得,即,解得.故选:.2.(2024·吉林油田第十一中学高三月考)若,则()A.8 B.7 C.6 D.5【答案】D【解析】因为,所以所以即,即解得故选:D3.(2024·全国高三专题练习)已知,则()A. B. C.或3 D.【答案】C【解析】当时成立;当时也成立;故选C.题型二排队问题【例2】(2024·全国高三专题练习)3名女生和5名男生排成一排.(1)若女生全排在一起,有多少种排法?(2)若女生都不相邻,有多少种排法?(3)其中甲必须排在乙左边(可不邻),有多少种排法?(4)其中甲不站最左边,乙不站最右边,有多少种排法?【答案】(1)4320;(2)14400;(3)20160;(4)30960.【解析】(1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同5名男生合在一起有6个元素,排成一排有种排法,而其中每一种排法中,3名女生之间又有种排法,因此,共有种不同排法;(2)(插空法)先排5名男生,有种排法,这5名男生之间和两端有6个位置,从中选取3个位置排女生,有种排法,因此共有种不同排法;(3)8名学生的所有排列共种,其中甲在乙左边与乙在甲左边的各占,因此符合要求的排法种数为;(4)甲、乙为特殊元素,左、右两边为特殊位置,法一(特殊元素法):甲在最右边时,其他的可全排,有种不同排法,甲不在最右边时,可从余下6个位置中任选一个,有种,而乙可排在除去最右边位置后剩余的6个中的任一个上,有种,其余人全排列,共有种不同排法,由分类加法计数原理知,共有种不同排法;法二(特殊位置法):先排最左边,除去甲外,有种排法,余下7个位置全排,有种排法,但应剔除乙在最右边时的排法种,因此共有种排法;法三(间接法):8名学生全排列,共种,其中,不符合条件的有甲在最左边时,有种排法,乙在最右边时,有种排法,其中都包含了甲在最左边,同时乙在最右边的情形,有种排法,因此共有种排法.【方法总结】【方法总结】排列问题常用方法直接法:把符合条件的排列数直接列式计算优先法:优先安排特殊元素或特殊位置3.捆绑法:相邻问题采取“捆绑法”即把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列4.插空法:不相邻问题采取“插空法”即对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空档中5.定序除法:对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列6.间接法:正难则反、等价转化的方法【举一反三】1.(2024·河北张家口市·高三期末)某班优秀学习小组有甲、乙、丙、丁、戊共5人,他们排成一排照相,则甲、乙二人相邻的排法种数为()A.24 B.36 C.48 D.60【答案】C【解析】先安排甲、乙相邻,有种排法,再把甲、乙看作一个元素,与其余三个人全排列,故有排法种数为.故选:C2.(2024·上海高三专题练习)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.24【答案】D【解析】先排三个空位,形成4个间隔,然后插入3个同学,故有种3.(2024·全国高三专题练习)甲、乙、丙、丁、戊、己六人按一定的顺序依次抽奖,要求甲排在乙前面,丙与丁不相邻且均不排在最后,则抽奖的顺序有()A.72种 B.144种 C.360种 D.720种【答案】B【解析】第一步先排甲、乙、戊、己,甲排在乙前面,则有种,第二步再将丙与丁插空到第一步排好的序列中,但注意到丙与丁均不排在最后,故有4个空可选,所以有中插空方法,所以根据分步乘法计数原理有种.故选:B.4.(2024·江苏南通市·高三月考)为弘扬我国古代的“六艺文化”,某学校欲利用每周的社团活动课可设“礼”“乐”“射”“御”“书”“数”6门课程,每周开设一门,连续开设六周.若课程“乐”不排在第一周,课程“书”排在第三周或第四周,则所有可能的排法种数为__________.【答案】192【解析】(1)当“乐”课程排在第2,5,6周时,;(2)当“乐”课程排在第3或4周时,,所有可能的排法种数为192.5.有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)选5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻.【答案】(1)2520种(2)5040种(3)3600种(4)576种(5)1440种【解析】(1)从7人中选5人排列,有Aeq\o\al(5,7)=7×6×5×4×3=2520(种).(2)分两步完成,先选3人站前排,有Aeq\o\al(3,7)种方法,余下4人站后排,有Aeq\o\al(4,4)种方法,共有Aeq\o\al(3,7)Aeq\o\al(4,4)=5040(种).(3)法一:(特殊元素优先法)先排甲,有5种方法,其余6人有Aeq\o\al(6,6)种排列方法,共有5×Aeq\o\al(6,6)=3600(种).法二:(特殊位置优先法)首尾位置可安排另6人中的两人,有Aeq\o\al(2,6)种排法,其他有Aeq\o\al(5,5)种排法,共有Aeq\o\al(2,6)Aeq\o\al(5,5)=3600(种).(4)(捆绑法)将女生看作一个整体与3名男生一起全排列,有Aeq\o\al(4,4)种方法,再将女生全排列,有Aeq\o\al(4,4)种方法,共有Aeq\o\al(4,4)·Aeq\o\al(4,4)=576(种).(5)(插空法)先排女生,有Aeq\o\al(4,4)种方法,再在女生之间及首尾5个空位中任选3个空位安排男生,有Aeq\o\al(3,5)种方法,共有Aeq\o\al(4,4)·Aeq\o\al(3,5)=1440(种).题型三排数问题【例3】(2024·全国高三专题练习)现有0、1、2、3、4、5、6、7、8、9共十个数字.(1)可以组成多少个无重复数字的三位数?(2)组成无重复数字的三位数中,315是从小到大排列的第几个数?(3)可以组成多少个无重复数字的四位偶数?(4)选出一个偶数和三个奇数,组成无重复数字的四位数,这样的四位数共有多少个?(5)如果一个数各个数位上的数字从左到右按由大到小的顺序排列,则称此正整数为“渐减数”,那么由这十个数字组成的所有“渐减数”共有多少个?【答案】(1)648;(2)156;(3)2296;(4)1140;(5)1013【解析】(1)由题意,无重复的三位数共有个;(2)当百位为1时,共有个数;当百位为2时,共有个数;当百位为3时,共有个数,所以315是第个数;(3)无重复的四位偶数,所以个位必须为0,2,4,6,8,千位上不能为0,当个位上为0时,共有个数;当个位上是2,4,6,8中的一个时,共有个数,所以无重复的四位偶数共有个数;(4)当选出的偶数为0时,共有个数,当选出的偶数不为0时,共有个数,所以这样的四位数共有个数;(5)当挑出两个数时,渐减数共有个,当挑出三个数时,渐减数共有个,,当挑出十个数时,渐减数共有个,所以这样的数共有个.【举一反三】1.(2024·湖南株洲市·高三一模)由0,1,2,5四个数组成没有重复数字的四位数中,能被5整除的个数是()A.24 B.12 C.10 D.6【答案】C【解析】当个位数是0时,有个,当个位数是5时,有个,所以能被5整除的个数是10,故选:C2.(2024·全国高三专题练习)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个 B.120个 C.96个 D.72个【答案】B【解析】根据题意,符合条件的五位数首位数字必须是4、5其中1个,末位数字为0、2、4中其中1个;分两种情况讨论:①首位数字为5时,末位数字有3种情况,在剩余的4个数中任取3个,放在剩余的3个位置上,有种情况,此时有3×24=72个;②首位数字为4时,末位数字有2种情况,在剩余的4个数中任取3个,放在剩余的3个位置上,有种情况,此时有2×24=48个.共有72+48=120个.故选:B3.(2024·龙港市第二高级中学高三开学考试)用1,2,3,4,5组成一个没有重复数字的五位数,三个奇数中仅有两个相邻的五位数有________.【答案】72【解析】用1,2,3,4,5组成一个没有重复数字的五位数,共有个;三个奇数中仅有两个相邻;其对立面是三个奇数都相邻或者都不相邻;当三个奇数都相邻时,把这三个奇数看成一个整体与2和4全排列共有个;三个奇数都不相邻时,把这三个奇数分别插入2和4形成的三个空内共有个;故符合条件的有;故答案为:.4.(2024·浙江金华市·高三其他模拟)用1,2,3,4,5,0组成数字不重复的六位数,满足1和2不相邻,5和0不相邻,则这样的六位数的个数为_________.【答案】【解析】1,2,3,4,5,0组成数字不重复的六位数的个数共有个其中1,2相邻的六位数的个数共有个5,0相邻的六位数的个数共有个1和2相邻且5和0相邻的六位数的个数共有个即满足1和2不相邻,5和0不相邻,则这样的六位数的个数为故答案为:题型四染色问题【例4】(2024·安徽省六安中学)如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色、相邻区域颜色不同,则区域不同涂色的方法种数为()A.360 B.400 C.420 D.480【答案】C【解析】根据题意,5个区域依次为A、B、C、D、E,如图,分4步进行分析:①对于区域A,有5种颜色可选,②对于区域B,与A区域相邻,有4种颜色可选;③对于区域C,与A、B区域相邻,有3种颜色可选;④,对于区域D、E,若D与B颜色相同,E区域有3种颜色可选,若D与B颜色不相同,D区域有2种颜色可选,E区域有2种颜色可选,则区域D、E有种选择,则不同的涂色方案有种;故选:C【举一反三】1.(2024·江苏高三专题练习)有六种不同颜色,给如图的六个区域涂色,要求相邻区域不同色,不同的涂色方法共有________.【答案】4320【解析】第一个区域有6种不同的涂色方法,第二个区域有5种不同的涂色方法,第三个区域有4种不同的涂色方法,第四个区域有3种不同的涂色方法,第五个区域有4种不同的涂色方法,第六个区域有3种不同的涂色方法,根据乘法原理.2.(2024·江苏)用红、黄、蓝、绿四种颜色给图中五个区域进行涂色,要求相邻区域所涂颜色不同,共有______种不同的涂色方法.(用数字回答)【答案】240【解析】从开始涂色,有4种方法,有3种方法,①若与涂色相同,则共有种涂色方法;②若与涂色不相同,则有2种涂色方法,当涂色相同时,有3种涂色方法;当涂色不相同时,有2种涂法,有2种涂色方法.共有种涂色方法.故答案为:240.3.(2024·四川省眉山车城中学)西部五省,有五种颜色供选择涂色,要求每省涂一色,相邻省不同色,有__________种涂色方法.【答案】420【解析】对于新疆有5种涂色的方法,对于青海有4种涂色方法,对于西藏有3种涂色方法,对于四川:若与新疆颜色相同,则有1种涂色方法,此时甘肃有3种涂色方法;若四川与新疆颜色不相同,则四川只有2种涂色方法,此时甘肃有2种涂色方法;根据分步、分类计数原理,则共有5×4×3×(2×2+1×3)=420种方法.故答案为420.4.(2024·全国高三专题练习)某城市在中心广场建造一个花圃,花圃分为6个部分.现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,则不同的栽种方法有______种.(用数字作答)【答案】120【解析】由题意,6个部分.栽种4种不同颜色的花,必有2组颜色相同的花,若2、5同色,则3、6同色或4、6同色,所以共有种栽种方法;若2、4同色,则3、6同色,所以共有种栽种方法;若3、5同色,则2、4同色或4、6同色,所以共有种栽种方法;所以共有种栽种方法.故答案为:120题型五分组分配问题【例5】按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;(3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本;(5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本;【答案】(1)60;(2)360;(3)15;(4)90;(5)15;(6)90.【解析】(1)先从6本书中选1本,有种分配方法;再从剩余5本书中选择2本,有种分配方法剩余的就是2本书,有种分配方法所以总共有种分配方法.(2)由(1)可知分组后共有60种方法,分别分给甲乙丙后的方法有种.(3)从6本书中选择2本书,有种分配方法;再从剩余4本书中选择2本书,有种分配方法;剩余的就是2本书,有种分配方法;所以有种分配方法.但是,该过程有重复.假如6本书分别为A、B、C、D、E、F,若三个步骤分别选出的是.则所有情况为,,,,,.所以分配方式共有种(4)由(3)可知,将三种分配方式分别分给甲乙丙三人,则分配方法为种(5)从6本书中选4本书的方法有种从剩余2本书中选1本书有种因为在最后两本书选择中发生重复了所以总共有种(6)由(5)可知,将三种分配情况分别分给甲乙丙三人即可,即种.【方法总结】【方法总结】分组、分配问题1.对不同元素的分配问题(1)对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以Aeq\o\al(n,n)(n为均分的组数),避免重复计数.(2)对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.(3)对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.2.对于相同元素的“分配”问题,常用方法是采用“隔板法”【举一反三】1.(2024·全国高三专题练习)把5张不同的电影票分给4个人,每人至少一张,则不同的分法种数为________.【答案】.【解析】将这张不同的电影票分成四组,每组至少一张,共有种分组办法,再分给人的不同分法有种.故答案为:.2.(2024·全国高三专题练习)在浙江省新高考选考科目报名中,甲、乙、丙、丁四位同学均已选择物理、化学作为选考科目,现要从生物、政治、历史、地理、技术这五门课程中选择一门作为选考科目,则不同的选报方案有___________种(用数字作答);若每位同学选报这五门学科中的任意一门是等可能的,则这四位同学恰好同时选报了其中的两门课程的概率为____________.【答案】625【解析】从生物、政治、历史、地理、技术这五门课程中选择一门作为选考科目,则不同的选报方案有种;若这四位同学恰好同时选报了其中的两门课程,其中一人独自选一科,另外三人选一科,共有不同的选报方案种,其中两人选一科,另外两人选另一科,共有不同的选报方案种,则这四位同学恰好同时选报了其中的两门课程的概率为故答案为:3.某学校有5位教师参加某师范大学组织的暑期骨干教师培训,现有5个培训项目,每位教师可任意选择其中一个项目进行培训,则恰有两个培训项目没有被这5位教师中的任何一位教师选择的情况数为。【答案】1500【解析】分两步:第一步:从5个培训项目中选取3个,共Ceq\o\al(3,5)种情况;第二步:5位教师分成两类:①选择选出的3个培训项目的教师人数分别为1人,1人,3人,共eq\f(C\o\al(3,5)C\o\al(1,2)C\o\al(1,1),A\o\al(2,2))种情况;②选择选出的3个培训项目的教师人数分别为1人,2人,2人,共eq\f(C\o\al(2,5)C\o\al(2,3)C\o\al(1,1),A\o\al(2,2))种情况.故选择情况数为Ceq\o\al(3,5)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(C\o\al(3,5)C\o\al(1,2)C\o\al(1,1),A\o\al(2,2))+\f(C\o\al(2,5)C\o\al(2,3)C\o\al(1,1),A\o\al(2,2))))Aeq\o\al(3,3)=1500(种).4.(2019·河北省九校第二次联考)第十四届全

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论