版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Page专题42向量法求距离、探索性及折叠问题(新高考专用)目录目录【真题自测】 2【考点突破】 3【考点1】利用向量法求距离 3【考点2】立体几何中的探索性问题 6【考点3】折叠问题 8【分层检测】 11【基础篇】 11【能力篇】 15【培优篇】 17真题自测真题自测一、解答题1.(2024·天津·高考真题)已知四棱柱中,底面为梯形,,平面,,其中.是的中点,是的中点.(1)求证平面;(2)求平面与平面的夹角余弦值;(3)求点到平面的距离.2.(2023·全国·高考真题)如图,在正四棱柱中,.点分别在棱,上,.
(1)证明:;(2)点在棱上,当二面角为时,求.3.(2022·全国·高考真题)如图,四面体中,,E为的中点.(1)证明:平面平面;(2)设,点F在上,当的面积最小时,求与平面所成的角的正弦值.4.(2024·全国·高考真题)如图,平面四边形ABCD中,,,,,,点E,F满足,,将沿EF翻折至,使得.(1)证明:;(2)求平面PCD与平面PBF所成的二面角的正弦值.考点突破考点突破【考点1】利用向量法求距离一、解答题1.(2024·海南·模拟预测)如图,在直四棱柱中,底面四边形为梯形,,.(1)证明:;(2)若直线AB与平面所成角的正弦值为,点为线段BD上一点,求点到平面的距离.2.(2024·吉林·模拟预测)如图所示,半圆柱与四棱锥拼接而成的组合体中,是半圆弧上(不含)的动点,为圆柱的一条母线,点在半圆柱下底面所在平面内,.(1)求证:;(2)若平面,求平面与平面夹角的余弦值;(3)求点到直线距离的最大值.3.(2024·河北·模拟预测)如图,四棱锥中,平面平面,.设中点为,过点的平面同时垂直于平面与平面.(1)求(2)求平面与平面夹角的正弦值;(3)求平面截四棱锥所得多边形的周长.4.(2024·江苏无锡·模拟预测)如图,在棱长为的正方体中,点在棱上,且.(1)求四棱锥的表面积(2)若点在棱上,且到平面的距离为,求点到直线的距离.5.(23-24高三下·湖南·阶段练习)如图,在四棱锥中,,,,,,平面平面,.
(1)证明:平面;(2)若点Q是线段的中点,M是直线上的一点,N是直线上的一点,是否存在点M,N使得?请说明理由.6.(2024·天津和平·二模)如图,三棱台中,为等边三角形,,平面ABC,点M,N,D分别为AB,AC,BC的中点,.(1)证明:平面;(2)求直线与平面所成角的正弦值;(3)求点D到平面的距离.反思提升:(1)向量法求点到直线距离的步骤①根据图形求出直线的单位方向向量v.②在直线上任取一点M(可选择特殊便于计算的点).计算点M与直线外的点N的方向向量eq\o(MN,\s\up6(→)).③垂线段长度d=eq\r(\o(MN,\s\up6(→))2-(\o(MN,\s\up6(→))·v)2).(2)求点到平面的距离的常用方法①直接法:过P点作平面α的垂线,垂足为Q,把PQ放在某个三角形中,解三角形求出PQ的长度就是点P到平面α的距离.②转化法:若点P所在的直线l平行于平面α,则转化为直线l上某一个点到平面α的距离来求.③等体积法.④向量法:设平面α的一个法向量为n,A是α内任意点,则点P到α的距离为d=eq\f(|\o(PA,\s\up6(→))·n|,|n|).【考点2】立体几何中的探索性问题一、解答题1.(2024·贵州贵阳·二模)由正棱锥截得的棱台称为正棱台.如图,正四棱台中,分别为的中点,,侧面与底面所成角为.
(1)求证:平面;(2)线段上是否存在点,使得直线与平面所成的角的正弦值为,若存在,求出线段的长;若不存在,请说明理由.2.(2024·福建泉州·模拟预测)如图,棱柱中,侧棱底面,,E,F分别为和的中点.(1)求证:平面;(2)设,在平面上是否存在点P,使?若存在,指出P点的位置:若不存,请说明理由.3.(2024·天津·模拟预测)如图,在四棱锥中,底面为直角梯形,,,,平面平面,,.(1)若点是边的中点,点是边的中点,求异面直线,所成角的余弦值;(2)求平面和平面的夹角的余弦值;(3)在棱上是否存在点,使得平面?若存在,求的值?若不存在,说明理由.4.(2024·黑龙江哈尔滨·模拟预测)在正四棱柱中,.(1)在线段上是否存在一点,使得直线平面,若存在,求出长,若不存在,请说明理由;(2)已知点在线段上,且,求二面角的余弦值.5.(2024·湖南常德·一模)已知直三棱柱中,,分别为和的中点,为棱上的动点,.(1)证明:平面平面;(2)设,是否存在实数,使得平面与平面所成的角的余弦值为?6.(2024·湖南·三模)如图,四棱锥的底面是梯形,平面.(1)求证:平面平面;(2)在棱上是否存在一点E,使得二面角的余弦值为.若存在,求出的值;若不存在,请说明理由.反思提升:第一步根据已知条件建立空间直角坐标系,利用向量法证明线线垂直第二步求两平面的法向量第三步计算向量的夹角(或函数值)第四步借助于函数的单调性或基本不等式确定最值第五步反思解题思路,检查易错点【考点3】折叠问题一、解答题1.(2024·北京大兴·三模)如图(1),在中,,,将沿折起到的位置,E,F分别为,上的动点,过作平面,交于点Q,使得平面,如图(2).(1)证明:;(2)若,再从条件①、条件②这两个条件中选择一个作为已知,求二面角的余弦值.条件①:平面平面;条件②:.2.(23-24高三上·河北·期末)如图所示,直角梯形PABC中,,,D为PC上一点,且,将PAD沿AD折起到SAD位置.(1)若,M为SD的中点,求证:平面AMB⊥平面SAD;(2)若,求平面SAD与平面SBC夹角的余弦值.3.(21-22高二下·江苏常州·期中)在中,,分别是上的点,满足且经过的重心,将沿折起到的位置,使,是的中点,如图所示.
(1)求与平面所成角的大小;(2)在线段上是否存在点(不与端点重合),使平面与平面垂直?若存在,求出与的比值;若不存在,请说明理由.4.(2023·山东潍坊·模拟预测)如图(1)五边形中,,将沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且⊥平面.(1)求证:;(2)若直线与所成角的正切值为,求直线与平面所成角的正弦值.5.(23-24高二上·四川南充·阶段练习)如图,菱形的对角线与交于点,,,点,分别在,上,,交于点,将沿折到位置,.(1)证明:平面;(2)求平面与平面的夹角的余弦值.6.(2023·江西·模拟预测)一年一度的创意设计大赛开幕了.今年小王从世界名画《永恒的记忆》中获得灵感,创作出了如图1的《垂直时光》.已知《垂直时光》是由两块半圆形钟组件和三根指针组成的,它如同一个标准的圆形钟沿着直径折成了直二面角(其中对应钟上数字3,对应钟上数字9).设的中点为,若长度为2的时针指向了钟上数字8,长度为3的分针指向了钟上数字12.现在小王准备安装长度为3的秒针(安装完秒针后,不考虑时针与分针可能产生的偏移;不考虑三根北针的粗细).
(1)若秒针指向了钟上数字4,如图2.连接、,若平面.求半圆形钟组件的半径;(2)若秒针指向了钟上数字5,如图3.设四面体的外接球球心为,求二面角的余弦值.反思提升:1.折叠问题中的平行与垂直关系的处理关键是结合图形弄清折叠前后变与不变的关系,尤其是隐含的垂直关系.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一平面上的性质发生变化.2.由于“线线垂直”“线面垂直”“面面垂直”之间可以相互转化,因此整个证明过程围绕着线面垂直这个核心展开,这是解决空间垂直问题的技巧.分层分层检测【基础篇】一、单选题1.(2024·山西·三模)正方体的棱长为2,分别为的中点,为底面的中心,则三棱锥的体积是(
)A. B. C. D.2.(2024·山东临沂·二模)已知正方体中,M,N分别为,的中点,则(
)A.直线MN与所成角的余弦值为 B.平面与平面夹角的余弦值为C.在上存在点Q,使得 D.在上存在点P,使得平面3.(23-24高二上·北京丰台·期中)正多面体也称柏拉图立体,被誉为最有规律的立体结构,是所有面都只由一种正多边形构成的多面体(各面都是全等的正多边形).数学家已经证明世界上只存在五种柏拉图立体,即正四面体、正六面体、正八面体、正十二面体、正二十面体.如图,已知一个正八面体的棱长为2,,分别为棱,的中点,则直线和夹角的余弦值为(
)A. B.C. D.4.(2024·北京顺义·二模)如图,正方体中,P是线段上的动点,有下列四个说法:①存在点P,使得平面;②对于任意点P,四棱锥体积为定值;③存在点P,使得平面;④对于任意点P,都是锐角三角形.其中,不正确的是(
)A.① B.② C.③ D.④二、多选题5.(2024·山东滨州·二模)图,在边长为4的正方形中,为的中点,为的中点.若分别沿,把这个正方形折成一个四面体,使、两点重合,重合后的点记为,则在四面体中,下列结论正确的是(
)
A.B.到直线的距离为C.三棱锥外接球的半径为D.直线与所成角的余弦值为6.(2024·贵州六盘水·三模)(多选)如图,在棱长为1的正方体中,点P是线段上的动点,则(
)A.的面积为B.三棱锥的体积为C.存在点P,使得⊥D.存在点P,使得⊥平面7.(2022·黑龙江哈尔滨·模拟预测)如图,在平行四边形中,,分别为的中点,沿将折起到的位置(不在平面上),在折起过程中,下列说法不正确的是(
)A.若是的中点,则平面B.存在某位置,使C.当二面角为直二面角时,三棱锥外接球的表面积为D.直线和平面所成的角的最大值为三、填空题8.(22-23高二下·安徽·阶段练习)已知是平面的法向量,点在平面内,则点到平面的距离为.9.(2024·北京房山·一模)如图,在棱长为1的正方体中,点P是对角线上的动点(点P与点A,不重合).给出下列结论:①存在点P,使得平面平面;②对任意点P,都有;③面积的最小值为;④若是平面与平面的夹角,是平面与平面的夹角,则对任意点P,都有.其中所有正确结论的序号是.10.(2024·北京西城·一模)如图,正方形和矩形所在的平面互相垂直.点在正方形及其内部运动,点在矩形及其内部运动.设,给出下列四个结论:①存在点,使;②存在点,使;③到直线和的距离相等的点有无数个;④若,则四面体体积的最大值为.其中所有正确结论的序号是.四、解答题11.(2024·天津北辰·三模)如图,在四棱锥中,平面,,∥,,,为棱的中点.(1)证明:平面;(2)求平面和平面夹角的余弦值;(3)求A点到直线的距离.12.(2023·福建厦门·模拟预测)筝形是指有一条对角线所在直线为对称轴的四边形.如图,四边形为筝形,其对角线交点为,将沿折到的位置,形成三棱锥.
(1)求到平面的距离;(2)当时,在棱上是否存在点,使得直线与平面所成角的正弦值为?若存在,求的值;若不存在,请说明理由.【能力篇】一、单选题1.(2023·湖南邵阳·二模)如图所示,在矩形中,,,平面,且,点为线段(除端点外)上的动点,沿直线将翻折到,则下列说法中正确的是(
)A.当点固定在线段的某位置时,点的运动轨迹为球面B.存在点,使平面C.点到平面的距离为D.异面直线与所成角的余弦值的取值范围是二、多选题2.(2024·山西晋城·二模)如图,在棱长为2的正方体中,点P是侧面内的一点,点E是线段上的一点,则下列说法正确的是(
)A.当点P是线段的中点时,存在点E,使得平面B.当点E为线段的中点时,过点A,E,的平面截该正方体所得的截面的面积为C.点E到直线的距离的最小值为D.当点E为棱的中点且时,则点P的轨迹长度为三、填空题3.(2023·江西宜春·一模)如图,多面体中,面为正方形,平面,且为棱的中点,为棱上的动点,有下列结论:①当为的中点时,平面;②存在点,使得;③直线与所成角的余弦值的最小值为;④三棱锥的外接球的表面积为.其中正确的结论序号为.(填写所有正确结论的序号)四、解答题4.(2024·北京·三模)如图,在四棱锥中,底面是边长为2的菱形,,,为中点,.(1)设平面平面,求证:;(2)从条件①,条件②,条件③中选择两个作为已知,使四棱锥存在且唯一确定.(ⅰ)求平面与平面所成角的余弦值;(ⅱ)平面交直线于点,求线段的长度.条件①:平面平面;条件②:;条件③:四棱锥的体积为.【培优篇】一、解答题1.(2024·湖北·模拟预测)如图,在梯形中,,,.将沿对角线折到的位置,点P在平面内的射影H恰好落在直线上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年设备租赁合同设备类型与租赁条件
- 2024年网络安全防护技术保密合同
- 2024新能源汽车生产与销售股份转让协议
- 2025年度智能家居窗帘智能控制升级合同3篇
- 2024食材配送与食堂承包合同
- 2025年度数据中心机房租赁及维护合同3篇
- 2024年防盗门交易协议范本版B版
- 2024年高科技产业在建项目抵押贷款协议3篇
- 2024年项目融资合同协议
- 2025年度海洋油气资源勘探开发承包合同样本3篇
- 2025年湖南出版中南传媒招聘笔试参考题库含答案解析
- 2025年度商用厨房油烟机安装与维护服务合同范本3篇
- 2024年03月恒丰银行2024年春季招考毕业生笔试历年参考题库附带答案详解
- 网络安全系统运维方案
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之14:“6策划-6.3变更的策划”(雷泽佳编制-2025B0)
- 2024年特厚板行业现状分析:中国特厚板市场占总销售量45.01%
- 2025年中国地质调查局乌鲁木齐自然资源综合调查中心招聘19人历年管理单位笔试遴选500模拟题附带答案详解
- 中国儿童重症监护病房镇痛和镇静治疗专家共识2024解读
- 音乐老师年度总结5篇
- 2024年专用:物业安全管理协议3篇
- 2024版商标许可使用合同与商标授权协议3篇
评论
0/150
提交评论