2025届高考数学一轮复习第九章平面解析几何第3节圆的方程教学案含解析新人教A版_第1页
2025届高考数学一轮复习第九章平面解析几何第3节圆的方程教学案含解析新人教A版_第2页
2025届高考数学一轮复习第九章平面解析几何第3节圆的方程教学案含解析新人教A版_第3页
2025届高考数学一轮复习第九章平面解析几何第3节圆的方程教学案含解析新人教A版_第4页
2025届高考数学一轮复习第九章平面解析几何第3节圆的方程教学案含解析新人教A版_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE1-第3节圆的方程考试要求驾驭确定圆的几何要素,驾驭圆的标准方程与一般方程.知识梳理1.圆的定义和圆的方程定义平面内到定点的距离等于定长的点的轨迹叫做圆方程标准(x-a)2+(y-b)2=r2(r>0)圆心C(a,b)半径为r一般x2+y2+Dx+Ey+F=0(D2+E2-4F>0)充要条件:D2+E2-4F>0圆心坐标:eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(D,2),-\f(E,2)))半径r=eq\f(1,2)eq\r(D2+E2-4F)2.点与圆的位置关系平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:(1)|MC|>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;(2)|MC|=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;(3)|MC|<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内.[常用结论与微点提示]1.圆心在坐标原点半径为r的圆的方程为x2+y2=r2.2.以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)·(x-x2)+(y-y1)(y-y2)=0.诊断自测1.推断下列结论正误(在括号内打“√”或“×”)(1)确定圆的几何要素是圆心与半径.()(2)方程x2+y2=a2表示半径为a的圆.()(3)方程x2+y2+4mx-2y+5m=0表示圆.()(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.()解析(2)当a=0时,x2+y2=a2表示点(0,0);当a<0时,表示半径为|a|的圆.(3)当(4m)2+(-2)2-4×5m>0,即m<eq\f(1,4)或m>1时表示圆.答案(1)√(2)×(3)×(4)√2.(老教材必修2P124A1改编)圆x2+y2-4x+6y=0的圆心坐标和半径分别是()A.(2,3),3 B.(-2,3),eq\r(3)C.(-2,-3),13 D.(2,-3),eq\r(13)解析圆的方程可化为(x-2)2+(y+3)2=13,所以圆心坐标是(2,-3),半径r=eq\r(13).答案D3.(老教材必修2P120例3改编)过点A(1,-1),B(-1,1),且圆心在直线x+y-2=0上的圆的方程是()A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2=4C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=4解析设圆心C的坐标为(a,b),半径为r.因为圆心C在直线x+y-2=0上,所以b=2-a.又|CA|2=|CB|2,所以(a-1)2+(2-a+1)2=(a+1)2+(2-a-1)2,所以a=1,b=1.所以r=2.所以方程为(x-1)2+(y-1)2=4.答案C4.(2024·合肥模拟)已知A(1,0),B(0,3)两点,则以AB为直径的圆的方程是()A.x2+y2-x-3y=0 B.x2+y2+x+3y=0C.x2+y2+x-3y=0 D.x2+y2-x+3y=0解析|AB|=eq\r(12+32)=eq\r(10),圆心为eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),\f(3,2))),半径r=eq\f(\r(10),2),∴圆的方程为eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(1,2)))eq\s\up12(2)+eq\b\lc\(\rc\)(\a\vs4\al\co1(y-\f(3,2)))eq\s\up12(2)=eq\f(10,4),化为一般方程为x2+y2-x-3y=0.答案A5.(2024·佛山一中期末)若k∈eq\b\lc\{\rc\}(\a\vs4\al\co1(-2,0,\f(4,5),3)),方程x2+y2+(k-1)x+2ky+k=0不表示圆,则k的取值集合中元素的个数为()A.1 B.2 C.3 D.4解析方程x2+y2+(k-1)x+2ky+k=0表示圆的条件为(k-1)2+(2k)2-4k>0,即5k2-6k+1>0,解得k>1或k<eq\f(1,5),又知该方程不表示圆,所以k的取值范围为eq\f(1,5)≤k≤1,又因为k∈eq\b\lc\{\rc\}(\a\vs4\al\co1(-2,0,\f(4,5),3)),所以满意条件的k=eq\f(4,5),即k的取值集合为eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(4,5))),故选A.答案A6.(2024·银川模拟)方程|y|-1=eq\r(1-(x-1)2)表示的曲线是()A.一个椭圆 B.一个圆C.两个圆 D.两个半圆解析由题意知|y|-1≥0,则y≥1或y≤-1,当y≥1时,原方程可化为(x-1)2+(y-1)2=1(y≥1),其表示以(1,1)为圆心、1为半径、直线y=1上方的半圆;当y≤-1时,原方程可化为(x-1)2+(y+1)2=1(y≤-1),其表示以(1,-1)为圆心、1为半径、直线y=-1下方的半圆.所以方程|y|-1=eq\r(1-(x-1)2)表示的曲线是两个半圆.故选D.答案D考点一圆的方程【例1】(1)(一题多解)已知圆E经过三点A(0,1),B(2,0),C(0,-1),且圆心在x轴的正半轴上,则圆E的标准方程为()A.eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(3,2)))eq\s\up12(2)+y2=eq\f(25,4) B.eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(3,4)))eq\s\up12(2)+y2=eq\f(25,16)C.eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(3,4)))eq\s\up12(2)+y2=eq\f(25,16) D.eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(3,4)))eq\s\up12(2)+y2=eq\f(25,4)(2)(2024·豫西五校联考)在平面直角坐标系xOy中,以点(0,1)为圆心且与直线x-by+2b+1=0相切的全部圆中,半径最大的圆的标准方程为()A.x2+(y-1)2=4 B.x2+(y-1)2=2C.x2+(y-1)2=8 D.x2+(y-1)2=16解析(1)法一(待定系数法)设圆E的一般方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),则由题意得eq\b\lc\{(\a\vs4\al\co1(1+E+F=0,,4+2D+F=0,,1-E+F=0,))解得eq\b\lc\{(\a\vs4\al\co1(D=-\f(3,2),,E=0,,F=-1.))所以圆E的一般方程为x2+y2-eq\f(3,2)x-1=0,即eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(3,4)))eq\s\up12(2)+y2=eq\f(25,16).法二(几何法)因为圆E经过点A(0,1),B(2,0),所以圆E的圆心在线段AB的垂直平分线y-eq\f(1,2)=2(x-1)上.又圆E的圆心在x轴的正半轴上,所以圆E的圆心坐标为eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4),0)).则圆E的半径为|EB|=eq\r(\b\lc\(\rc\)(\a\vs4\al\co1(2-\f(3,4)))\s\up12(2)+(0-0)2)=eq\f(5,4),所以圆E的标准方程为eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(3,4)))eq\s\up12(2)+y2=eq\f(25,16).(2)由直线x-by+2b+1=0可得该直线过定点A(-1,2),设圆心为B(0,1),由题意可知要使所求圆的半径最大,则rmax=|AB|=eq\r((-1-0)2+(2-1)2)=eq\r(2),所以半径最大的圆的标准方程为x2+(y-1)2=2.故选B.答案(1)C(2)B规律方法求圆的方程时,应依据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过探讨圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三特性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线;(2)代数法,即设出圆的方程,用待定系数法求解.【训练1】(1)(2024·成都诊断)若圆C:x2+eq\b\lc\(\rc\)(\a\vs4\al\co1(y+\f(1,2m)))eq\s\up12(2)=n的圆心为椭圆M:x2+my2=1的一个焦点,且圆C经过M的另一个焦点,则圆C的标准方程为________.(2)已知圆C经过P(-2,4),Q(3,-1)两点,且在x轴上截得的弦长等于6,则圆C的方程为________.解析(1)∵圆C的圆心为eq\b\lc\(\rc\)(\a\vs4\al\co1(0,-\f(1,2m))),∴eq\r(\f(1,m)-1)=eq\f(1,2m),m=eq\f(1,2).又圆C经过M的另一个焦点,则圆C经过点(0,1),从而n=4.故圆C的标准方程为x2+(y+1)2=4.(2)设圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),将P,Q两点的坐标分别代入得eq\b\lc\{(\a\vs4\al\co1(2D-4E-F=20,①,3D-E+F=-10.②))又令y=0,得x2+Dx+F=0.③设x1,x2是方程③的两根,由|x1-x2|=6,得D2-4F=36,④联立①②④,解得D=-2,E=-4,F=-8,或D=-6,E=-8,F=0.故所求圆的方程为x2+y2-2x-4y-8=0或x2+y2-6x-8y=0.答案(1)x2+(y+1)2=4(2)x2+y2-2x-4y-8=0或x2+y2-6x-8y=0考点二与圆有关的最值问题多维探究角度1利用几何意义求最值【例2-1】已知点(x,y)在圆(x-2)2+(y+3)2=1上.(1)求eq\f(y,x)的最大值和最小值;(2)求x+y的最大值和最小值;(3)求eq\r(x2+y2+2x-4y+5)的最大值和最小值.解(1)eq\f(y,x)可视为点(x,y)与原点连线的斜率,eq\f(y,x)的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为y=kx,由直线与圆相切得圆心到直线的距离等于半径,即eq\f(|2k+3|,\r(k2+1))=1,解得k=-2+eq\f(2\r(3),3)或k=-2-eq\f(2\r(3),3),∴eq\f(y,x)的最大值为-2+eq\f(2\r(3),3),最小值为-2-eq\f(2\r(3),3).(2)设t=x+y,则y=-x+t,t可视为直线y=-x+t在y轴上的截距,∴x+y的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时在y轴上的截距.由直线与圆相切得圆心到直线的距离等于半径,即eq\f(|2+(-3)-t|,\r(2))=1,解得t=eq\r(2)-1或t=-eq\r(2)-1.∴x+y的最大值为eq\r(2)-1,最小值为-eq\r(2)-1.(3)eq\r(x2+y2+2x-4y+5)=eq\r((x+1)2+(y-2)2),求它的最值可视为求点(x,y)到定点(-1,2)的距离的最值,可转化为求圆心(2,-3)到定点(-1,2)的距离与半径的和或差.又圆心到定点(-1,2)的距离为eq\r(34),∴eq\r(x2+y2+2x-4y+5)的最大值为eq\r(34)+1,最小值eq\r(34)-1.规律方法把有关式子进行转化或利用所给式子的几何意义解题,充分体现了数形结合以及转化的数学思想,其中以下几类转化较为常见:(1)形如m=eq\f(y-b,x-a)的最值问题,可转化为动直线斜率的最值问题;(2)形如m=ax+by的最值问题,可转化为动直线截距的最值问题;(3)形如m=(x-a)2+(y-b)2的最值问题,可转化为两点间距离的平方的最值问题.角度2利用对称性求最值【例2-2】已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.5eq\r(2)-4 B.eq\r(17)-1C.6-2eq\r(2) D.eq\r(17)解析P是x轴上随意一点,则|PM|的最小值为|PC1|-1,同理|PN|的最小值为|PC2|-3,则|PM|+|PN|的最小值为|PC1|+|PC2|-4.作C1关于x轴的对称点C′1(2,-3).所以|PC1|+|PC2|=|PC1′|+|PC2|≥|C1′C2|=5eq\r(2),即|PM|+|PN|=|PC1|+|PC2|-4≥5eq\r(2)-4.答案A规律方法求解形如|PM|+|PN|(其中M,N均为动点)且与圆C有关的折线段的最值问题的基本思路:(1)“动化定”,把与圆上动点的距离转化为与圆心的距离;(2)“曲化直”,即将折线段之和转化为同始终线上的两线段之和,一般要通过对称性解决.角度3建立函数关系求最值【例2-3】(2024·重庆模拟)设点P(x,y)是圆:x2+(y-3)2=1上的动点,定点A(2,0),B(-2,0),则eq\o(PA,\s\up6(→))·eq\o(PB,\s\up6(→))的最大值为________.解析由题意,知eq\o(PA,\s\up6(→))=(2-x,-y),eq\o(PB,\s\up6(→))=(-2-x,-y),所以eq\o(PA,\s\up6(→))·eq\o(PB,\s\up6(→))=x2+y2-4,由于点P(x,y)是圆上的点,故其坐标满意方程x2+(y-3)2=1,故x2=-(y-3)2+1,所以eq\o(PA,\s\up6(→))·eq\o(PB,\s\up6(→))=-(y-3)2+1+y2-4=6y-12.由圆的方程x2+(y-3)2=1,易知2≤y≤4,所以,当y=4时,eq\o(PA,\s\up6(→))·eq\o(PB,\s\up6(→))的值最大,最大值为6×4-12=12.答案12规律方法依据题中条件列出相关的函数关系式,再依据函数学问或基本不等式求最值.【训练2】(1)(多填题)(角度1)已知实数x,y满意方程x2+y2-4x+1=0,则x2+y2的最大值为________,最小值为________.(2)(角度2)已知A(0,2),点P在直线x+y+2=0上,点Q在圆C:x2+y2-4x-2y=0上,则|PA|+|PQ|的最小值是________.(3)(角度3)已知圆O:x2+y2=9,若过点C(2,1)的直线l与圆O交于P,Q两点,则△OPQ的面积最大值为()A.2B.2eq\r(5)C.eq\f(9,2)D.5解析(1)x2+y2表示圆(x-2)2+y2=3上的一点与原点距离的平方,由平面几何学问知,在原点和圆心连线与圆的两个交点处取得最大值和最小值(如图).又圆心到原点的距离为eq\r((2-0)2+(0-0)2)=2,所以x2+y2的最大值是(2+eq\r(3))2=7+4eq\r(3),x2+y2的最小值是(2-eq\r(3))2=7-4eq\r(3).(2)因为圆C:x2+y2-4x-2y=0,故圆C是以C(2,1)为圆心,半径r=eq\r(5)的圆.设点A(0,2)关于直线x+y+2=0的对称点为A′(m,n),故eq\b\lc\{(\a\vs4\al\co1(\f(m+0,2)+\f(n+2,2)+2=0,,\f(n-2,m-0)=1,))解得eq\b\lc\{(\a\vs4\al\co1(m=-4,,n=-2,))故A′(-4,-2).连接A′C交圆C于Q,由对称性可知|PA|+|PQ|=|A′P|+|PQ|≥|A′Q|=|A′C|-r=2eq\r(5).(3)当直线l的斜率不存在时,l的方程为x=2,则P,Q的坐标为(2,eq\r(5)),(2,-eq\r(5)),所以S△OPQ=eq\f(1,2)×2×2eq\r(5)=2eq\r(5).当直线l的斜率存在时,设l的方程为y-1=k(x-2)eq\b\lc\(\rc\)(\a\vs4\al\co1(k≠\f(1,2))),则圆心到直线PQ的距离d=eq\f(|1-2k|,\r(1+k2)),由平面几何学问得|PQ|=2eq\r(9-d2),S△OPQ=eq\f(1,2)·|PQ|·d=eq\f(1,2)·2eq\r(9-d2)·d=eq\r((9-d2)d2)≤eq\r(\b\lc\(\rc\)(\a\vs4\al\co1(\f(9-d2+d2,2)))\s\up12(2))=eq\f(9,2),当且仅当9-d2=d2,即d2=eq\f(9,2)时,S△OPQ取得最大值eq\f(9,2).因为2eq\r(5)<eq\f(9,2),所以S△OPQ的最大值为eq\f(9,2).答案(1)7+4eq\r(3)7-4eq\r(3)(2)2eq\r(5)(3)C考点三与圆有关的轨迹问题【例3】已知Rt△ABC的斜边为AB,且A(-1,0),B(3,0),求:(1)(一题多解)直角顶点C的轨迹方程;(2)直角边BC的中点M的轨迹方程.解(1)法一设C(x,y),因为A,B,C三点不共线,所以y≠0.因为AC⊥BC,且BC,AC斜率均存在,所以kAC·kBC=-1,又kAC=eq\f(y,x+1),kBC=eq\f(y,x-3),所以eq\f(y,x+1)·eq\f(y,x-3)=-1,化简得x2+y2-2x-3=0.因此,直角顶点C的轨迹方程为x2+y2-2x-3=0(y≠0).法二设AB的中点为D,由中点坐标公式得D(1,0),由直角三角形的性质知|CD|=eq\f(1,2)|AB|=2.由圆的定义知,动点C的轨迹是以D(1,0)为圆心,2为半径的圆(由于A,B,C三点不共线,所以应除去与x轴的交点).所以直角顶点C的轨迹方程为(x-1)2+y2=4(y≠0).(2)设M(x,y),C(x0,y0),因为B(3,0),M是线段BC的中点,由中点坐标公式得x=eq\f(x0+3,2),y=eq\f(y0+0,2),所以x0=2x-3,y0=2y.由(1)知,点C的轨迹方程为(x-1)2+y2=4(y≠0),将x0=2x-3,y0=2y代入得(2x-4)2+(2y)2=4,即(x-2)2+y2=1.因此动点M的轨迹方程为(x-2)2+y2=1(y≠0).规律方法求与圆有关的轨迹问题时,依据题设条件的不同常采纳以下方法:(1)干脆法,干脆依据题目供应的条件列出方程;(2)定义法,依据圆、直线等定义列方程;(3)几何法,利用圆的几何性质列方程;(4)代入法,找到要求点与已知点的关系,代入已知点满意的关系式等.【训练3】已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB的中点M的轨迹C的方程.解(1)由x2+y2-6x+5=0得(x-3)2+y2=4,所以圆C1的圆心坐标为(3,0).(2)设M(x,y),因为点M为线段AB的中点,所以C1M⊥AB,所以kC1M·kAB=-1,当x≠3时可得eq\f(y,x-3)·eq\f(y,x)=-1,整理得eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(3,2)))eq\s\up12(2)+y2=eq\f(9,4),又当直线l与x轴重合时,M点坐标为(3,0),代入上式成立.设直线l的方程为y=kx,与x2+y2-6x+5=0联立,消去y得:(1+k2)x2-6x+5=0.令其判别式Δ=(-6)2-4(1+k2)×5=0,得k2=eq\f(4,5),此时方程为eq\f(9,5)x2-6x+5=0,解上式得x=eq\f(5,3),因此eq\f(5,3)<x≤3.所以线段AB的中点M的轨迹方程为eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(3,2)))eq\s\up12(2)+y2=eq\f(9,4)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(5,3)<x≤3)).A级基础巩固一、选择题1.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是()A.(-1,1) B.(0,1)C.(-∞,-1)∪(1,+∞) D.a=±1解析因为点(1,1)在圆的内部,所以(1-a)2+(1+a)2<4,所以-1<a<1.答案A2.经过点(1,0),且圆心是两直线x=1与x+y=2的交点的圆的方程为()A.(x-1)2+y2=1 B.(x-1)2+(y-1)2=1C.x2+(y-1)2=1 D.(x-1)2+(y-1)2=2解析由eq\b\lc\{(\a\vs4\al\co1(x=1,,x+y=2,))得eq\b\lc\{(\a\vs4\al\co1(x=1,,y=1,))即所求圆的圆心坐标为(1,1),又由该圆过点(1,0),得其半径为1,故圆的方程为(x-1)2+(y-1)2=1.答案B3.(2024·荆州模拟)若圆(x-1)2+(y-1)2=2关于直线y=kx+3对称,则k的值是()A.2 B.-2 C.1 D.-1解析由题意知直线y=kx+3过圆心(1,1),即1=k+3,解得k=-2.答案B4.点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是()A.(x-2)2+(y+1)2=1 B.(x-2)2+(y+1)2=4C.(x+4)2+(y-2)2=4 D.(x+2)2+(y-1)2=1解析设圆上随意一点为(x1,y1),中点为(x,y),则eq\b\lc\{(\a\vs4\al\co1(x=\f(x1+4,2),,y=\f(y1-2,2),))所以eq\b\lc\{(\a\vs4\al\co1(x1=2x-4,,y1=2y+2,))代入x2+y2=4,得(2x-4)2+(2y+2)2=4,化简得(x-2)2+(y+1)2=1.答案A5.(2024·河北九校联考)圆C的半径为2,圆心在x轴的正半轴上,直线3x+4y+4=0与圆C相切,则圆C的方程为()A.x2-y2-2x-3=0 B.x2+y2+4x=0C.x2+y2-4x=0 D.x2+y2+2x-3=0解析由题意设所求圆的方程为(x-m)2+y2=4(m>0),则eq\f(|3m+4|,\r(32+42))=2,解得m=2或m=-eq\f(14,3)(舍去),故所求圆的方程为(x-2)2+y2=4,即x2+y2-4x=0,故选C.答案C二、填空题6.(多填题)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是________,半径是________.解析由已知方程表示圆,则a2=a+2,解得a=2或a=-1.当a=2时,方程不满意表示圆的条件,故舍去.当a=-1时,原方程为x2+y2+4x+8y-5=0,化为标准方程为(x+2)2+(y+4)2=25,表示以(-2,-4)为圆心,半径为5的圆.答案(-2,-4)57.已知圆C:(x-2)2+(y+m-4)2=1,当m改变时,圆C上的点与原点O的最短距离是________.解析圆C:(x-2)2+(y+m-4)2=1表示圆心为C(2,-m+4),半径r=1的圆,则|OC|=eq\r(22+(-m+4)2),所以当m=4时,|OC|的最小值为2,故当m改变时,圆C上的点与原点的最短距离是|OC|-r=2-1=1.答案18.在圆x2+y2-2x-6y=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为______.解析圆的标准方程为(x-1)2+(y-3)2=10,则圆心(1,3),半径r=eq\r(10),圆心(1,3)与E(0,1)距离eq\r((1-0)2+(3-1)2)=eq\r(5),由题意知AC⊥BD,且|AC|=2eq\r(10),|BD|=2eq\r(10-5)=2eq\r(5),所以四边形ABCD的面积为S=eq\f(1,2)|AC|·|BD|=eq\f(1,2)×2eq\r(10)×2eq\r(5)=10eq\r(2).答案10eq\r(2)三、解答题9.已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4eq\r(10).(1)求直线CD的方程;(2)求圆P的方程.解(1)由题意知,直线AB的斜率k=1,中点坐标为(1,2).则直线CD的方程为y-2=-(x-1),即x+y-3=0.(2)设圆心P(a,b),则由点P在CD上得a+b-3=0.①又因为直径|CD|=4eq\r(10),所以|PA|=2eq\r(10),所以(a+1)2+b2=40.②由①②解得eq\b\lc\{(\a\vs4\al\co1(a=-3,,b=6))或eq\b\lc\{(\a\vs4\al\co1(a=5,,b=-2.))所以圆心P(-3,6)或P(5,-2).所以圆P的方程为(x+3)2+(y-6)2=40或(x-5)2+(y+2)2=40.10.(2024·全国Ⅱ卷)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.解(1)由题意得F(1,0),l的方程为y=k(x-1)(k>0).设A(x1,y1),B(x2,y2).由eq\b\lc\{(\a\vs4\al\co1(y=k(x-1),,y2=4x))得k2x2-(2k2+4)x+k2=0.Δ=16k2+16>0,故x1+x2=eq\f(2k2+4,k2).所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=eq\f(4k2+4,k2).由题设知eq\f(4k2+4,k2)=8,解得k=-1(舍去),k=1.因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x0,y0),则eq\b\lc\{(\a\vs4\al\co1(y0=-x0+5,,(x0+1)2=\f((y0-x0+1)2,2)+16.))解得eq\b\lc\{(\a\vs4\al\co1(x0=3,,y0=2))或eq\b\lc\{(\a\vs4\al\co1(x0=11,,y0=-6.))因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.B级实力提升11.(2024·西安调研)圆(x-2)2+y2=4关于直线y=eq\f(\r(3),3)x对称的圆的方程是()A.(x-eq\r(3))2+(y-1)2=4B.(x-eq\r(2))2+(y-eq\r(2))2=4C.x2+(y-2)2=4D.(x-1)2+(y-eq\r(3))2=4解析设圆(x-2)2+y2=4的圆心(2,0)关于直线y=eq\f(\r(3),3)x对称的点的坐标为(a,b),则有eq\b\lc\{(\a\vs4\al\co1(\f(b,a-2)·\f(\r(3),3)=-1,,\f(b,2)=\f(\r(3),3)·\f(a+2,2),))解得a=1,b=eq\r(3),从而所求圆的方程为(x-1)2+(y-eq\r(3))2=4.故选D.答案D12.(2024·全国Ⅲ卷)直线x+y+2=0分别与x轴、y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6] B.[4,8]C.[eq\r(2),3eq\r(2)] D.[2eq\r(2),3eq\r(2)]解析设圆(x-2)2+y2=2的圆心为C,半径为r,点P到直线x+y+2=0的距离为d,则圆心C(2,0),r=eq\r(2),所以圆心C到直线x+y+2=0的距离为2eq\r(2),可得dmax=2eq\r(2)+r=3eq\r(2),dmin=2eq\r(2)-r=eq\r(2).由已知条件可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论