考点巩固24 分布列及三大分布(五大考点)2025年高考一轮复习(原卷)_第1页
考点巩固24 分布列及三大分布(五大考点)2025年高考一轮复习(原卷)_第2页
考点巩固24 分布列及三大分布(五大考点)2025年高考一轮复习(原卷)_第3页
考点巩固24 分布列及三大分布(五大考点)2025年高考一轮复习(原卷)_第4页
考点巩固24 分布列及三大分布(五大考点)2025年高考一轮复习(原卷)_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中数学精编资源2/2考点巩固卷24分布列及三大分布(五大考点)考点01:分布列均值和方差的性质1.某城市采用摇号买车的方式,有20万人摇号,每个月摇上的人退出摇号,没有摇上的人继续进入下月摇号,每个月都有人补充进摇号队伍,每个季度第一个月摇上的概率为,第二个月为,第三个月为,则平均每个人摇上需要的时间为(

)个月.A.7 B.8 C.9 D.102.有甲、乙两个不透明的袋子,甲袋子里有1个白球,乙袋子里有5个白球和5个黑球,现从乙袋子里随机取出个球放入甲袋子里,再从甲袋子里随机取出一个球,记取到的白球的个数为,则当变大时(

)A.变小 B.先变小再变大C.变大 D.先变大再变小3.克拉丽丝有一枚不对称的硬币.每次掷出后正面向上的概率为,她掷了次硬币,最终有10次正面向上.但她没有留意自己一共掷了多少次硬币.设随机变量表示每掷次硬币中正面向上的次数,现以使最大的值估计的取值并计算.(若有多个使最大,则取其中的最小值).下列说法正确的是(

)A. B.C. D.与10的大小无法确定4.下列说法中,正确命题的个数为(

)①已知随机变量服从二项分布,若,则.②对具有线性相关关系的变量,,其线性回归方程为,若样本点的中心为,则实数的值是.③以模型去拟合一组数据时,为了求出回归方程,设,求得线性回归方程为,则、的值分别是和.④若样本数据的方差为,则数据:的方差为16A.0个 B.1个 C.2个 D.3个5.下列命题中,不正确的是(

)A.若随机变量,则B.若随机变量,且,则C.若x>0,,则的最小值为D.两个随机变量的相关系数越大,两个变量的线性相关性越强6.下列命题错误的是(

)A.两个随机变量的线性相关性越强,相关系数的绝对值越接近于1B.设,若,,则C.线性回归直线一定经过样本点的中心D.一个袋子中有100个大小相同的球,其中有40个黄球、60个白球,从中不放回地随机摸出20个球作为样本,用随机变量X表示样本中黄球的个数,则X服从二项分布,且7.若随机变量的可能取值为,且(),则(

)A. B. C. D.8.设,,是不全相等的实数,随机变量取值为,,的概率都是,随机变量取值为,,的概率也都是,则(

)A., B.,C., D.,9.某人在次射击中击中目标的次数为,,其中,,击中奇数次为事件,则(

)A.若,,则取最大值时B.当时,取得最小值C.当时,随着的增大而增大D.当时,随着的增大而减小10.下列说法不正确的是(

)A.一组数据1,4,14,6,13,10,17,19的25%分位数为5B.一组数据,3,2,5,7的中位数为3,则的取值范围是C.若随机变量,则方差D.若随机变量,且,则考点02:超几何分布11.一箱苹果共有12个苹果,其中有个是烂果,从这箱苹果中随机抽取3个.恰有2个烂果的概率为,则(

)A.3 B.4 C.5 D.612.2024年“与辉同行”直播间开播,董宇辉领衔7位主播从“心”出发,其中男性5人,女性3人,现需排班晚8:00黄金档,随机抽取两人,则男生人数的期望为(

)A. B. C. D.13.某商场推出一种抽奖活动:盒子中装有有奖券和无奖券共10张券,客户从中任意抽取2张,若至少抽中1张有奖券,则该客户中奖,否则不中奖.客户甲每天都参加1次抽奖活动,一个月(30天)下来,发现自己共中奖11次,根据这个结果,估计盒子中的有奖券有(

)A.1张 B.2张 C.3张 D.4张14.袋中有6个大小相同的黑球,编号为,还有4个同样大小的白球,编号为,现从中任取4个球,则下列结论中正确的是(

)①取出的最大号码服从超几何分布;②取出的黑球个数服从超几何分布;③取出2个白球的概率为;④若取出一个黑球记2分,取出一个白球记1分,则总得分最大的概率为A.①② B.②④ C.③④ D.①③④15.下列说法正确的为(

)A.某高中为了解在校学生对参加某项社会实践活动的意向,拟采用分层抽样的方法从该校三个年级的学生中抽取一个容量为60的样本.已知该校高一、高二、高三年级学生数之比为5:4:3,则应从高三年级中抽取14名学生B.10件产品中有8件正品,2件次品,若从这10件产品中任取2件,则恰好取到1件次品的概率为C.若随机变量服从正态分布,,则D.设某校男生体重(单位:kg)与身高(单位:cm)具有线性相关关系,根据一组样本数据,用最小二乘法建立的回归方程为,若该校某男生的身高为170cm,则可断定其体重为62.5kg16.在一次“概率”相关的研究性活动中,老师在每个箱子中装了4个小球,其中3个是白球,1个是黑球,用两种方法让同学们来摸球.方法一:在20箱中各任意摸出一个小球;方法二:在10箱中各任意摸出两个小球.将方法一、二至少能摸出一个黑球的概率分别记为和,则(

)A. B.C. D.以上三种情况都有可能17.2021年1月18日,国家统计局公布我国2020年GDP总量首次突破100万亿元,这是我国经济里程碑式的新飞跃.尤其第三产业增长幅度较大,现抽取6个企业,调查其第三产业产值增长量分别为0.4,0.6,1.2,1.2,1.8,2.0(单位:十万元),若增长量超过1.5(十万元)可评为优秀企业,现从6个企业中随机抽取两个,则恰好有一个优秀企业的概率为(

)A. B. C. D.18.《易系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这个数中任取个数,则这个数中至少有个阳数的概率为(

)A. B. C. D.19.纹样是中国传统文化的重要组成部分,它既代表着中华民族的悠久历史、社会的发展进步,也是世界文化艺术宝库中的巨大财富.小楠从小就对纹样艺术有浓厚的兴趣.收集了如下9枚纹样徽章,其中4枚凤纹徽章,5枚龙纹徽章.小楠从9枚徽章中任取3枚,则其中至少有一枚凤纹徽章的概率为(

).A. B. C. D.20.一个班级共有30名学生,其中有10名女生,现从中任选三人代表班级参加学校开展的某项活动,假设选出的3名代表中的女生人数为变量X,男生的人数为变量Y,则等于A. B.C. D.考点03:二项分布及二项分布的概率最大问题21.在概率论中,全概率公式指的是:设为样本空间,若事件两两互斥,,则对任意的事件,有.若甲盒中有2个白球、2个红球、1个黑球,乙盒中有个白球、3个红球、2个黑球,现从甲盒中随机取出一个球放入乙盒,再从乙盒中随机取出一个球,若从甲盒中取出的球和从乙盒中取出的球颜色相同的概率大于等于,则的最大值为.22.近年来,我国外卖业发展迅猛,外卖小哥穿梭在城市的大街小巷成为一道亮丽的风景线.某外卖小哥每天来往于4个外卖店(外卖店的编号分别为),约定:每天他首先从1号外卖店取单,叫做第1次取单,之后,他等可能的前往其余3个外卖店中的任何一个店取单叫做第2次取单,依此类推.假设从第2次取单开始,他每次都是从上次取单的店之外的3个外卖店取单,设事件第次取单恰好是从1号店取单是事件发生的概率,显然,则23.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程,该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲口袋中各装有1个黑球和2个白球,乙口袋中装有2个黑球和1个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n()次这样的操作,记口袋甲中黑球的个数为,恰有1个黑球的概率为,则的值是;的数学期望是.24.甲、乙、丙三个人去做相互传球训练,训练规则是确定一人第一次将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人,每次必须将球传出.如果第一次由甲将球传出,设次传球后球在甲手中的概率为,则;.25.如图是一块高尔顿板的示意图,在一块木板上钉着若干排相互平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃.将小球从顶端放入,小球下落的过程中,每次碰到小木钉后都等可能地向左或向右落下,后落入底部的格子中.记格子从左到右的编号分别为,用表示小球最后落入格子的号码,若,则.26.为铭记历史、缅怀先烈,增强爱国主义情怀,某学校开展共青团知识竞赛活动.在最后一轮晋级比赛中,甲、乙、丙三名同学回答一道有关团史的问题,每个人回答正确与否互不影响.已知甲回答正确的概率为,甲、丙两人都回答正确的概率是,乙、丙两人都回答正确的概率是.若规定三名同学都回答这个问题,则甲、乙、丙三名同学中至少有1人回答正确的概率为;若规定三名同学抢答这个问题,已知甲、乙、丙抢到答题机会的概率分别为,,,则这个问题回答正确的概率为.27.已知一道解答题有两小问,每小问5分,共10分.现每十个人中有六人能够做出第一问,但在第一问做不出的情况下,第二问做出的概率为0.1;第一问做出的情况下,第二问做不出的概率为0.6.用频率估计概率,则此题得满分的概率是;得0分的概率是.28.甲和乙两个箱子中各装有5个大小相同的小球,其中甲箱中有3个红球、2个白球,乙箱中有4个红球、1个白球,从甲箱中随机抽出2个球,在已知至少抽到一个红球的条件下,则2个球都是红球的概率为;掷一枚质地均匀的骰子,如果点数小于等于4,从甲箱子中随机抽出1个球;如果点数大于等于5,从乙箱子中随机抽出1个球,若抽到的是红球,则它是来自乙箱的概率是.29.某单位为了提高员工身体素质,开展双人投篮比寒,现甲、乙两人为一组参加比赛,每次由其中一人投篮,规则如下:若投中,则此人继续投篮,若未投中,则换为对方投篮,无论之前投篮的情况如何,甲每次投篮的命中率均为,乙每次投篮的命中率均为.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为.第2次投篮的人是甲的概率为;已知在第2次投篮的人是乙的情况下,第1次投篮的人是甲的概率为.30.学习小组为了研究手机对学生学习的影响,对本学校学生手机使用情况统计分析有以下结果:若学生前一天没有玩手机,则接下来一天也不玩手机的概率为0.7,若学生前一天玩手机,接下来一天也玩手机的概率为0.8.已知一个学生第一天没玩手机,根据这个统计结果计算,那么他第二天玩手机的概率为,第三天不玩手机的概率为.考点04:正态分布常考题型31.若随机变量,且,则.32.正态分布在区间和上取值的概率为,,则二者的大小关系为.33.某生产线正常生产下生产的产品的一项质量指标近似服从正态分布,若,则实数的值为.34.李明记录了自己50次坐公交车所花的时间为(单位:分钟),经数据分析发现服从正态分布,平均时间为36分钟,方差为36,则.35.某次数学练习中,学生成绩X服从正态分布,若,则从参加这次考试的学生中任意选取3名学生,至少有2名学生的成绩高于125的概率是.36.随机变量的概率分布密度函数,其图象如图所示,设,则图中阴影部分的面积为.37.某市统计高中生身体素质状况,规定身体素质指标值在内就认为身体素质合格,在[60,84]内就认为身体素质良好,在内就认为身体素质优秀,现从全市随机抽取100名高中生的身体素质指标值,经计算.若该市高中生的身体素质指标值服从正态分布,则估计该市高中生身体素质良好的概率为.(用百分数作答,精确到)参考数据:若随机变量服从正态分布,则,.38.已知某种零件的尺寸(单位:mm)在内的为合格品.某企业生产的该种零件的尺寸X服从正态分布,且,则估计该企业生产的2000个零件中合格品的个数为.39.某企业生产一种零部件,其质量指标介于的为优品.技术改造前,该企业生产的该种零部件质量指标服从正态分布;技术改造后,该企业生产的同种零部件质量指标服从正态分布.那么,该企业生产的这种零部件技术改造后的优品率与技术改造前的优品率之差为.(若,则,,)40.小明所在的公司上午9:00上班,小明上班通常选择自驾、公交或地铁这三种方式.若小明选择自驾,则从家里到达公司所用的时间(单位:分钟)服从正态分布若小明选择地铁,则从家里到达公司所用的时间(单位:分钟)服从正态分布;若小明选择公交,则从家里到达公司所用的时间(单位:分钟)服从正态分布.若小明上午8:12从家里出发,则选择上班迟到的可能性最小.(填“自驾”“公交”或“地铁”)参考数据:若则,,考点05:独立事件的乘法公式41.目前不少网络媒体都引入了虚拟主播,某视频平台引入虚拟主播,在第1天的直播中有超过100万次的观看.(1)已知小李第1天观看了虚拟主播的直播,若小李前一天观看了虚拟主播的直播,则当天观看虚拟主播的直播的概率为,若前一天没有观看虚拟主播的直播,则当天观看虚拟主播的直播的概率为,求小李第2天与第3天至少有一天观看虚拟主播的直播的概率;(2)若未来10天内虚拟主播的直播每天有超过100万次观看的概率均为,记这10天中每天有超过100万次观看的天数为.①判断为何值时,最大;②记,求.42.甲、乙两名围棋学员进行围棋比赛,规定每局比赛胜者得1分,负者得0分,平局双方均得0分,比赛一直进行到一方比另一方多两分为止,多得两分的一方赢得比赛.已知每局比赛中,甲获胜的概率为,乙获胜的概率为,两人平局的概率为,且每局比赛结果相互独立.(1)若,求进行4局比赛后甲学员赢得比赛的概率;(2)当时,(i)若比赛最多进行5局,求比赛结束时比赛局数的分布列及期望的最大值;(ii)若比赛不限制局数,求“甲学员赢得比赛”的概率(用表示).43.某箱中有个除颜色之外均相同的球,已知.箱中1个球为白球,其余为黑球.现在该箱中进行一取球实验:每次从箱中等可能地取出一个球,若取出白球或取球次后结束实验,否则进行相应操作进行下一次取球.设实验结束时的取球次数为.(1)若取出黑球后放回箱中,求的数学期望;(2)若取出黑球后替换为白球放回箱中,求的最大值,并证明:.44.希望中学高三(8)班拟举办为期两天的气排球比赛,晏老师从体育室拿了4个排球放入球车中提供使用,4个排球中有2个新球与2个旧球,比赛当天从球车中随机取出2个球进行比赛,赛完后新球变成旧球放回球车.设第1天与第2天赛完后球车中旧球数量分别为和.(1)求的分布列与数学期望.(2)求与.45.小李参加一种红包接龙游戏:他在红包里塞了元,然后发给朋友,如果猜中,将获得红包里的所有金额;如果未猜中,将当前的红包转发给朋友,如果猜中,、平分红包里的金额;如果未猜中,将当前的红包转发给朋友,如果猜中,、和平分红包里的金额;如果未猜中,红包里的钱将退回小李的账户,设、、猜中的概率分别为,,,且、、是否猜中互不影响.(1)求恰好获得元的概率;(2)设获得的金额为元,求的分布列及的数学期望.46.小林有五张卡片,他等概率的在每张卡片上写下1,2,3,4,5中的某个数字.(1)求五张卡片上的数字都不相同的概率;(2)证明:这五张卡片上最大的数字最可能是5.47.甲、乙两人进行足球射门训练,设有I、II两个射门区,约定如下:每人随机选择I区内射门或II区内射门,在I区内射门,进球得1分,不进球得0分;在II区内射门,进球得3分,不进球得0分.已知甲每次在I区内射门进球的概率均为,每次在II区内射门进球的概率均为;乙每次在I区内射门进球的概率均为,每次在II区内射门进球的概率均为,且甲、乙两人射门进球与否互不影响(甲、乙各完成一次射门为一次射门训练).(1)在一次射门训练中,求甲、乙都得0分的概率;(2)若3次射门训练中,表示甲、乙得分相等的射门训练次数,求随机变量的分布列与数学期望.48.阳春三月,油

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论