下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
/第四章学情评估卷时间:60分钟满分:100分一、选择题(共8小题,每题3分,共计24分)1.将下列多项式分解因式,结果中不含有因式x+A.x2+C.(x−2.将a3A.ab(C.ab(3.若x2+(A.1或5 B.7或−14.对于①a−2A.①是因式分解,②是乘法运算B.①是乘法运算,②是因式分解C.①②都是因式分解D.①②都是乘法运算5.[2024榆林期末]一位密码编译爱好者的密码手册中有这样一条信息:a−b,x−1,3,x2+1A.爱数学 B.我爱数学 C.爱祖国 D.我爱祖国6.[2024西安灞桥区期中]已知a,b,c是△ABC的三边长,且满足aA.等腰三角形 B.直角三角形C.等腰三角形或直角三角形 D.等腰直角三角形7.如图,长与宽分别为a,b的长方形的周长为14,面积为10,则a3A.2560 B.490 C.70 D.498.对于任何正整数a,多项式(3A.被9整除 B.被a整除C.被a+1整除 D.被二、填空题(共5小题,每题3分,共计15分)9.多项式6a10.从m2,2mn11.已知ab=2,a12.若m,n为常数,多项式x2+mx+13.刘徽是我国魏晋时期伟大的数学家,他在《九章算术注》中指出:“勾、股幂合为弦幂,明矣.”也就是说,图①中直角三角形的三边a,b,c存在a2+b2=c2的关系.他在书中构造了一些基本图形来解决问题.如图②,分别将以a为边长的正方形和以b为边长的正方形置于以c三、解答题(共6小题,计61分)14.(8分)把下列各式因式分解:(1)4x(2)a3(3)(a(4)x215.[2024榆林期末](8分)阅读以下材料:因式分解:(x解:令x+y=A,则原式=A上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)1−(2)(n16.(12分)用简便方法计算:(1)9992(2)23×(3)999.92(4)(517.(10分)(1)如图甲,从边长为a的正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形,然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证因式分解公式成立的是________________________________.(2)根据下面四个算式:52112152192请你再写出两个(不同于上面算式)具有上述规律的算式.(3)用文字写出反映(2)中算式的规律,并证明这个规律的正确性.18.[2024西安临潼区期末](10分)阅读下列材料:数学研究发现,常用的因式分解的方法有提公因式法、公式法,但还有很多的多项式只用上述方法无法因式分解,如:m2−m(1)因式分解:a3(2)因式分解:ax19.(13分)阅读下列材料:教科书中这样写道:我们把a2+2ab+b2和a2−2ab例1:分解因式:x2原式=(例2:求代数式x2原式=(x2−2x+1)(1)分解因式:x2(2)求多项式y2(3)已知m2+2mn
【参考答案】第四章学情评估卷一、选择题(共8小题,每题3分,共计24分)1.D2.C3.B4.A5.D6.C7.B8.C二、填空题(共5小题,每题3分,共计15分)9.3a10.m211.202412.−113.a2三、解答题(共6小题,计61分)14.(1)解:原式=(2)原式=a(3)原式=((4)原式=15.(1)解:将“x−y”看成整体,令原式=1再将“A”还原,得原式=((2)将“n2−2原式=(再将“A”还原,得原式=(16.(1)解:9992(2)23×=2.718(3)999.92=(=999.8(4)(517.(1)a2(2)解:32−1(3)两个正奇数的平方差一定能被8整除.证明:设较大的奇数为(2n+1),较小的奇数为(2m则(2易得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初级招标采购从业人员《招标采购法律法规》近年考试真题试题库(含答案)
- 2024年卫生健康委公务员招录事业单位招聘考试管理单位遴选招聘83人600题题库带答案
- 主体结构复习测试卷含答案
- 初级指挥员考试(灭火救援理论)练习卷含答案(一)
- 关于博弈论的课程设计
- 回忆我的母亲微课程设计
- 创意班五官课程设计
- 保险信托课程设计案例
- 体育新闻app课程设计
- 商品会员管理课程设计
- 期中测试卷(1~3单元)2024-2025学年人教版数学五年级上册
- 人工智能概论课件完整版
- 中学教学课件:下第课《认识人工智能》课件
- 企业清算解散方案
- 10以内连加连减练习题(直接打印版)
- 预防性侵害安全教育
- 2024秋期国家开放大学专科《液压与气压传动》一平台在线形考(形考任务+实验报告)试题及答案
- 2023版初中语文新课程标准
- 物资搬运服务方案
- 2024年安徽省合肥仲裁委员会招聘历年高频难、易错点500题模拟试题附带答案详解
- 《HSK标准教程1》第1课课件20240328
评论
0/150
提交评论