




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第04讲基本不等式及其应用1、基本不等式如果SKIPIF1<0,那么SKIPIF1<0,当且仅当SKIPIF1<0时,等号成立.其中,SKIPIF1<0叫作SKIPIF1<0的算术平均数,SKIPIF1<0叫作SKIPIF1<0的几何平均数.即正数SKIPIF1<0的算术平均数不小于它们的几何平均数.基本不等式1:若SKIPIF1<0SKIPIF1<0,则SKIPIF1<0,当且仅当SKIPIF1<0时取等号;基本不等式2:若SKIPIF1<0SKIPIF1<0,则SKIPIF1<0(或SKIPIF1<0),当且仅当SKIPIF1<0时取等号.注意(1)基本不等式的前提是“一正”“二定”“三相等”;其中“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指满足等号成立的条件.(2)连续使用不等式要注意取得一致.【解题方法总结】1、几个重要的不等式(1)SKIPIF1<0(2)基本不等式:如果SKIPIF1<0,则SKIPIF1<0(当且仅当“SKIPIF1<0”时取“”).特例:SKIPIF1<0(SKIPIF1<0同号).(3)其他变形:①SKIPIF1<0(沟通两和SKIPIF1<0与两平方和SKIPIF1<0的不等关系式)②SKIPIF1<0(沟通两积SKIPIF1<0与两平方和SKIPIF1<0的不等关系式)③SKIPIF1<0(沟通两积SKIPIF1<0与两和SKIPIF1<0的不等关系式)④重要不等式串:SKIPIF1<0即调和平均值SKIPIF1<0几何平均值SKIPIF1<0算数平均值SKIPIF1<0平方平均值(注意等号成立的条件).2、均值定理已知SKIPIF1<0.(1)如果SKIPIF1<0(定值),则SKIPIF1<0(当且仅当“SKIPIF1<0”时取“=”).即“和为定值,积有最大值”.(2)如果SKIPIF1<0(定值),则SKIPIF1<0(当且仅当“SKIPIF1<0”时取“=”).即积为定值,和有最小值”.3、常见求最值模型模型一:SKIPIF1<0,当且仅当SKIPIF1<0时等号成立;模型二:SKIPIF1<0,当且仅当SKIPIF1<0时等号成立;模型三:SKIPIF1<0,当且仅当SKIPIF1<0时等号成立;模型四:SKIPIF1<0,当且仅当SKIPIF1<0时等号成立.题型一:基本不等式及其应用【解题方法总结】熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证.例1.数学命题的证明方式有很多种.利用图形证明就是一种方式.现有如图所示图形,在等腰直角三角形SKIPIF1<0中,点O为斜边AB的中点,点D为斜边AB上异于顶点的一个动点,设SKIPIF1<0,SKIPIF1<0,用该图形能证明的不等式为(
).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例2.已知x,y都是正数,且SKIPIF1<0,则下列选项不恒成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例3.下列运用基本不等式求最值,使用正确的个数是(
)SKIPIF1<0已知SKIPIF1<0,求SKIPIF1<0的最小值;解答过程:SKIPIF1<0;SKIPIF1<0求函数SKIPIF1<0的最小值;解答过程:可化得SKIPIF1<0;SKIPIF1<0设SKIPIF1<0,求SKIPIF1<0的最小值;解答过程:SKIPIF1<0,当且仅当SKIPIF1<0即SKIPIF1<0时等号成立,把SKIPIF1<0代入SKIPIF1<0得最小值为4.A.0个 B.1个 C.2个 D.3个题型二:直接法求最值【解题方法总结】直接利用基本不等式求解,注意取等条件.例4.若SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,则SKIPIF1<0的最大值为______.例5.若SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,则SKIPIF1<0的最小值是____________.例6.已知实数SKIPIF1<0,则SKIPIF1<0的最小值为___________.题型三:常规凑配法求最值【解题方法总结】1、通过添项、拆项、变系数等方法凑成和为定值或积为定值的形式.2、注意验证取得条件.例7.若SKIPIF1<0,则SKIPIF1<0的最小值为___________.例8.已知SKIPIF1<0,则SKIPIF1<0的最小值为__________.例9.若SKIPIF1<0,则SKIPIF1<0的最小值为______例10.若关于x的不等式SKIPIF1<0的解集为SKIPIF1<0,则SKIPIF1<0的最小值为_________.题型四:消参法求最值【解题方法总结】消参法就是对应不等式中的两元问题,用一个参数表示另一个参数,再利用基本不等式进行求解.解题过程中要注意“一正,二定,三相等”这三个条件缺一不可!例11.已知正实数a,b满足SKIPIF1<0,则SKIPIF1<0的最小值是()A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.6例12.若SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0的最小值为___________.例13.已知SKIPIF1<0,SKIPIF1<0,满足SKIPIF1<0,则SKIPIF1<0的最小值是______.题型五:双换元求最值【解题方法总结】若题目中含是求两个分式的最值问题,对于这类问题最常用的方法就是双换元,分布运用两个分式的分母为两个参数,转化为这两个参数的不等关系.1、代换变量,统一变量再处理.2、注意验证取得条件.例14.设SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,则SKIPIF1<0的最大值为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例15.若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0的最小值为______.例16.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0取到最小值为________.题型六:“1”的代换求最值【解题方法总结】1的代换就是指凑出1,使不等式通过变形出来后达到运用基本不等式的条件,即积为定值,凑的过程中要特别注意等价变形.1、根据条件,凑出“1”,利用乘“1”法.2、注意验证取得条件.例17.若直线SKIPIF1<0过点SKIPIF1<0,则SKIPIF1<0的最小值为______.例18.已知SKIPIF1<0,则SKIPIF1<0的最小值为__________.例19.已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,则SKIPIF1<0的最小值为______.例20.已知正实数SKIPIF1<0满足SKIPIF1<0,则SKIPIF1<0的最小值为___________.题型七:齐次化求最值【解题方法总结】齐次化就是含有多元的问题,通过分子、分母同时除以得到一个整体,然后转化为运用基本不等式进行求解.例21.已知正实数a,b,c,SKIPIF1<0,则SKIPIF1<0的最小值为_______________.例22.已知a,b为正实数,且SKIPIF1<0,则SKIPIF1<0的最小值为______.例23.已知SKIPIF1<0,则SKIPIF1<0的最大值是____________.题型八:利用基本不等式证明不等式【解题方法总结】类似于基本不等式的结构的不等式的证明可以利用基本不等式去组合、分解、运算获得证明.例24.利用基本不等式证明:已知SKIPIF1<0都是正数,求证:SKIPIF1<0例25.已知x,y,z为正数,证明:(1)若SKIPIF1<0,则SKIPIF1<0;(2)若SKIPIF1<0,则SKIPIF1<0.例26.已知函数SKIPIF1<0,若SKIPIF1<0的解集为SKIPIF1<0.(1)求实数SKIPIF1<0,SKIPIF1<0的值;(2)已知SKIPIF1<0均为正数,且满足SKIPIF1<0,求证:SKIPIF1<0.题型九:利用基本不等式解决实际问题【解题方法总结】1、理解题意,设出变量,建立函数模型,把实际问题抽象为函数的最值问题.2、注意定义域,验证取得条件.3、注意实际问题隐藏的条件,比如整数,单位换算等.例27.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下进行技术攻关,采取了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本SKIPIF1<0(元)与月处理量SKIPIF1<0(吨)之间的函数关系可近似的表示为SKIPIF1<0,且处理每吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?例28.某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为100吨,最多为600吨,月处理成本SKIPIF1<0(元)与月处理量x(吨)之间的函数关系可近似地表示为SKIPIF1<0.(1)该单位每月处理量为多少吨时,才能使月处理成本最低?月处理成本最低是多少元?(2)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?每吨的平均处理成本最低是多少元?例29.截至SKIPIF1<0年SKIPIF1<0月SKIPIF1<0日,全国新型冠状病毒的感染人数突破SKIPIF1<0人SKIPIF1<0疫情严峻,请同学们利用数学模型解决生活中的实际问题.(1)我国某科研机构新研制了一种治疗新冠肺炎的注射性新药,并已进入二期临床试验阶段SKIPIF1<0已知这种新药在注射停止后的血药含量SKIPIF1<0(单位:SKIPIF1<0)随着时间SKIPIF1<0(单位:SKIPIF1<0).的变化用指数模型SKIPIF1<0描述,假定某药物的消除速率常数SKIPIF1<0(单位:SKIPIF1<0),刚注射这种新药后的初始血药含量SKIPIF1<0,且这种新药在病人体内的血药含量不低于SKIPIF1<0时才会对新冠肺炎起疗效,现给某新冠病人注射了这种新药,求该新药对病人有疗效的时长大约为多少小时?(精确到SKIPIF1<0,参考数据:SKIPIF1<0,SKIPIF1<0)(2)为了抗击新冠,需要建造隔离房间.如图,每个房间是长方体,且有一面靠墙,底面积为SKIPIF1<0平方米SKIPIF1<0,侧面长为SKIPIF1<0米,且SKIPIF1<0不超过SKIPIF1<0,房高为SKIPIF1<0米.房屋正面造价SKIPIF1<0元SKIPIF1<0平方米,侧面造价SKIPIF1<0元SKIPIF1<0平方米.如果不计房屋背面、屋顶和地面费用,则侧面长为多少时,总价最低?题型十:与SKIPIF1<0、平方和、SKIPIF1<0有关问题的最值【解题方法总结】利用基本不等式变形求解例30.(多选题)若实数SKIPIF1<0,SKIPIF1<0满足SKIPIF1<0,则(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例31.(多选题)已知SKIPIF1<0,且SKIPIF1<0,则(
)A.SKIPIF1<0的最小值为4 B.SKIPIF1<0的最小值为SKIPIF1<0C.SKIPIF1<0的最大值为SKIPIF1<0 D.SKIPIF1<0的最小值为SKIPIF1<0例32.(多选题)已知SKIPIF1<0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药品计划采购管理制度
- 药品食品仓库管理制度
- 药店医保统筹管理制度
- 药店消防培训管理制度
- 菌类种植基地管理制度
- 设备事故考核管理制度
- 设备售后出差管理制度
- 设备工具领取管理制度
- 设备检修费用管理制度
- 设备维护成本管理制度
- 2025版国家开放大学法学本科《国际私法》历年期末纸质考试案例题题库
- 【MOOC】中医诊断学-福建中医药大学 中国大学慕课MOOC答案
- 【MOOC】机械原理-西北工业大学 中国大学慕课MOOC答案
- 彩票参数及公式
- 中华传统文化进中小学课程教材指南
- 消防工程常用设施三维图解
- 2020年《知识产权法》模拟考试1000题(含标准答案)
- 青春自护-远离不良诱惑主题班会
- 年薪制员工聘用合同(3篇)
- 医疗卫生机构重大事故隐患判定标准
- 2024年北京市海淀区初一(下)期末语文试卷及答案
评论
0/150
提交评论