




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北省唐山市唐县第一中学高三第二次诊断性检测数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.运行如图所示的程序框图,若输出的值为300,则判断框中可以填()A. B. C. D.2.从抛物线上一点(点在轴上方)引抛物线准线的垂线,垂足为,且,设抛物线的焦点为,则直线的斜率为()A. B. C. D.3.祖暅原理:“幂势既同,则积不容异”.意思是说:两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设、为两个同高的几何体,、的体积不相等,、在等高处的截面积不恒相等.根据祖暅原理可知,是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”.如图就是一重卦.在所有重卦中随机取一重卦,则该重卦至少有2个阳爻的概率是()A. B. C. D.5.党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是()A. B.C. D.6.已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则下述四个结论:①②③④点为函数的一个对称中心其中所有正确结论的编号是()A.①②③ B.①③④ C.①②④ D.②③④7.已知某超市2018年12个月的收入与支出数据的折线图如图所示:根据该折线图可知,下列说法错误的是()A.该超市2018年的12个月中的7月份的收益最高B.该超市2018年的12个月中的4月份的收益最低C.该超市2018年1-6月份的总收益低于2018年7-12月份的总收益D.该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元8.集合,则集合的真子集的个数是A.1个 B.3个 C.4个 D.7个9.已知抛物线的焦点为,过点的直线与抛物线交于,两点(设点位于第一象限),过点,分别作抛物线的准线的垂线,垂足分别为点,,抛物线的准线交轴于点,若,则直线的斜率为A.1 B. C. D.10.在三角形中,,,求()A. B. C. D.11.设函数,则使得成立的的取值范围是().A. B.C. D.12.设抛物线上一点到轴的距离为,到直线的距离为,则的最小值为()A.2 B. C. D.3二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中,的系数为______用数字作答14.如图,某地一天从时的温度变化曲线近似满足函数,则这段曲线的函数解析式为______________.15.在平面直角坐标系中,已知点,,若圆上有且仅有一对点,使得的面积是的面积的2倍,则的值为_______.16.数列满足,则,_____.若存在n∈N*使得成立,则实数λ的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知(1)当时,判断函数的极值点的个数;(2)记,若存在实数,使直线与函数的图象交于不同的两点,求证:.18.(12分)如图,四边形为菱形,为与的交点,平面.(1)证明:平面平面;(2)若,,三棱锥的体积为,求菱形的边长.19.(12分)已知为等差数列,为等比数列,的前n项和为,满足,,,.(1)求数列和的通项公式;(2)令,数列的前n项和,求.20.(12分)秉持“绿水青山就是金山银山”的生态文明发展理念,为推动新能源汽车产业迅速发展,有必要调查研究新能源汽车市场的生产与销售.下图是我国某地区年至年新能源汽车的销量(单位:万台)按季度(一年四个季度)统计制成的频率分布直方图.(1)求直方图中的值,并估计销量的中位数;(2)请根据频率分布直方图估计新能源汽车平均每个季度的销售量(同一组数据用该组中间值代表),并以此预计年的销售量.21.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,直线交曲线于两点,为中点.(1)求曲线的直角坐标方程和点的轨迹的极坐标方程;(2)若,求的值.22.(10分)如图,四棱锥E﹣ABCD的侧棱DE与四棱锥F﹣ABCD的侧棱BF都与底面ABCD垂直,,//,.(1)证明://平面BCE.(2)设平面ABF与平面CDF所成的二面角为θ,求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由,则输出为300,即可得出判断框的答案【详解】由,则输出的值为300,,故判断框中应填?故选:.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.2、A【解析】
根据抛物线的性质求出点坐标和焦点坐标,进而求出点的坐标,代入斜率公式即可求解.【详解】设点的坐标为,由题意知,焦点,准线方程,所以,解得,把点代入抛物线方程可得,,因为,所以,所以点坐标为,代入斜率公式可得,.故选:A【点睛】本题考查抛物线的性质,考查运算求解能力;属于基础题.3、A【解析】
由题意分别判断命题的充分性与必要性,可得答案.【详解】解:由题意,若、的体积不相等,则、在等高处的截面积不恒相等,充分性成立;反之,、在等高处的截面积不恒相等,但、的体积可能相等,例如是一个正放的正四面体,一个倒放的正四面体,必要性不成立,所以是的充分不必要条件,故选:A.【点睛】本题主要考查充分条件、必要条件的判定,意在考查学生的逻辑推理能力.4、C【解析】
利用组合的方法求所求的事件的对立事件,即该重卦没有阳爻或只有1个阳爻的概率,再根据两对立事件的概率和为1求解即可.【详解】设“该重卦至少有2个阳爻”为事件.所有“重卦”共有种;“该重卦至少有2个阳爻”的对立事件是“该重卦没有阳爻或只有1个阳爻”,其中,没有阳爻(即6个全部是阴爻)的情况有1种,只有1个阳爻的情况有种,故,所以该重卦至少有2个阳爻的概率是.故选:C【点睛】本题主要考查了对立事件概率和为1的方法求解事件概率的方法.属于基础题.5、D【解析】根据四个列联表中的等高条形图可知,图中D中共享与不共享的企业经济活跃度的差异最大,它最能体现共享经济对该部门的发展有显著效果,故选D.6、B【解析】
首先根据三角函数的平移规则表示出,再根据对称性求出、,即可求出的解析式,从而验证可得;【详解】解:由题意可得,又∵和的图象都关于对称,∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正确,②错误.故选:B【点睛】本题考查三角函数的性质的应用,三角函数的变换规则,属于基础题.7、D【解析】
用收入减去支出,求得每月收益,然后对选项逐一分析,由此判断出说法错误的选项.【详解】用收入减去支出,求得每月收益(万元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A选项说法正确;月收益最低,B选项说法正确;月总收益万元,月总收益万元,所以前个月收益低于后六个月收益,C选项说法正确,后个月收益比前个月收益增长万元,所以D选项说法错误.故选D.【点睛】本小题主要考查图表分析,考查收益的计算方法,属于基础题.8、B【解析】
由题意,结合集合,求得集合,得到集合中元素的个数,即可求解,得到答案.【详解】由题意,集合,则,所以集合的真子集的个数为个,故选B.【点睛】本题主要考查了集合的运算和集合中真子集的个数个数的求解,其中作出集合的运算,得到集合,再由真子集个数的公式作出计算是解答的关键,着重考查了推理与运算能力.9、C【解析】
根据抛物线定义,可得,,又,所以,所以,设,则,则,所以,所以直线的斜率.故选C.10、A【解析】
利用正弦定理边角互化思想结合余弦定理可求得角的值,再利用正弦定理可求得的值.【详解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故选:A.【点睛】本题考查利用正弦定理求值,涉及正弦定理边角互化思想以及余弦定理的应用,考查计算能力,属于中等题.11、B【解析】
由奇偶性定义可判断出为偶函数,由单调性的性质可知在上单调递增,由此知在上单调递减,从而将所求不等式化为,解绝对值不等式求得结果.【详解】由题意知:定义域为,,为偶函数,当时,,在上单调递增,在上单调递减,在上单调递增,则在上单调递减,由得:,解得:或,的取值范围为.故选:.【点睛】本题考查利用函数的单调性和奇偶性求解函数不等式的问题;奇偶性的作用是能够确定对称区间的单调性,单调性的作用是能够将函数值的大小关系转化为自变量的大小关系,进而化简不等式.12、A【解析】
分析:题设的直线与抛物线是相离的,可以化成,其中是点到准线的距离,也就是到焦点的距离,这样我们从几何意义得到的最小值,从而得到的最小值.详解:由①得到,,故①无解,所以直线与抛物线是相离的.由,而为到准线的距离,故为到焦点的距离,从而的最小值为到直线的距离,故的最小值为,故选A.点睛:抛物线中与线段的长度相关的最值问题,可利用抛物线的几何性质把动线段的长度转化为到准线或焦点的距离来求解.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
利用二项展开式的通项公式求出展开式的通项,令,求出展开式中的系数.【详解】二项展开式的通项为令得的系数为故答案为1.【点睛】利用二项展开式的通项公式是解决二项展开式的特定项问题的工具.14、,【解析】
根据图象得出该函数的最大值和最小值,可得,,结合图象求得该函数的最小正周期,可得出,再将点代入函数解析式,求出的值,即可求得该函数的解析式.【详解】由图象可知,,,,,从题图中可以看出,从时是函数的半个周期,则,.又,,得,取,所以,.故答案为:,.【点睛】本题考查由图象求函数解析式,考查计算能力,属于中等题.15、【解析】
写出所在直线方程,求出圆心到直线的距离,结合题意可得关于的等式,求解得答案.【详解】解:直线的方程为,即.圆的圆心到直线的距离,由的面积是的面积的2倍的点,有且仅有一对,可得点到的距离是点到直线的距离的2倍,可得过圆的圆心,如图:由,解得.故答案为:.【点睛】本题考查直线和圆的位置关系以及点到直线的距离公式应用,考查数形结合的解题思想方法,属于中档题.16、【解析】
利用“退一作差法”求得数列的通项公式,将不等式分离常数,利用商比较法求得的最小值,由此求得的取值范围,进而求得的最小值.【详解】当时两式相减得所以当时,满足上式综上所述存在使得成立的充要条件为存在使得,设,所以,即,所以单调递增,的最小项,即有的最小值为.故答案为:(1).(2).【点睛】本小题主要考查根据递推关系式求数列的通项公式,考查数列单调性的判断方法,考查不等式成立的存在性问题的求解策略,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)没有极值点;(2)证明见解析【解析】
(1)求导可得,再求导可得,则在递增,则,从而在递增,即可判断;(2)转化问题为存在且,使,可得,由(1)可知,即,则,整理可得,则,设,则可整理为,设,利用导函数可得,即可求证.【详解】(1)当时,,,所以在递增,所以,所以在递增,所以函数没有极值点.(2)由题,,若存在实数,使直线与函数的图象交于不同的两点,即存在且,使.由可得,,由(1)可知,可得.,所以,即,下面证明,只需证明:,令,则证,即.设,那么,所以,所以,即【点睛】本题考查利用导函数求函数的极值点,考查利用导函数解决双变量问题,考查运算能力与推理论证能力.18、(1)证明见解析;(2)1【解析】
(1)由菱形的性质和线面垂直的性质,可得平面,再由面面垂直的判定定理,即可得证;(2)设,分别求得,和的长,运用三棱锥的体积公式,计算可得所求值.【详解】(1)四边形为菱形,,平面,,又,平面,又平面,平面平面;(2)设,在菱形中,由,可得,,,,在中,可得,由面,知,为直角三角形,可得,三棱锥的体积,,菱形的边长为1.【点睛】本题考查面面垂直的判定,注意运用线面垂直转化,考查三棱锥的体积的求法,考查化简运算能力和推理能力,意在考查学生对这些知识的理解掌握水平.19、(1),;(2).【解析】
(1)设的公差为,的公比为,由基本量法列式求出后可得通项公式;(2)奇数项分一组用裂项相消法求和,偶数项分一组用等比数列求和公式求和.【详解】(1)设的公差为,的公比为,由,.得:,解得,∴,;(2)由,得,为奇数时,,为偶数时,,∴.【点睛】本题考查求等差数列和等比数列的通项公式,考查分组求和法及裂项相消法、等差数列与等比数列的前项和公式,求通项公式采取的是基本量法,即求出公差、公比,由通项公式前项和公式得出相应结论.数列求和问题,对不是等差数列或等比数列的数列求和,需掌握一些特殊方法:错位相减法,裂项相消法,分组(并项)求和法,倒序相加法等等.20、(1),中位数为;(2)新能源汽车平均每个季度的销售量为万台,以此预计年的销售量约为万台.【解析】
(1)根据频率分布直方图中所有矩形面积之和为可计算出的值,利用中位数左边的矩形面积之和为可求得销量的中位数的值;(2)利用每个矩形底边的中点值乘以相应矩形的面积,相加可得出销量的平均数,由此可预计年的销售量.【详解】(1)由于频率分布直方图的所有矩形面积之和为,则,解得,由于,因此,销量的中位数为;(2)由频率分布直方图可知,新能源汽车平均每个季度的销售量为(万台),由此预测年的销售量为万台.【点睛】本题考查利用频率分布直方图求参数、中位数以及平均数的计算,考查计算能力,属于基础题.21、(1),;(2)或【解析】
(1)根据曲线的参数方程消去参数,可得曲线的直角坐标方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 前期策划合同范本
- 养牛设备出售合同范本
- 保障性住房购房合同范本
- 加油卡租车合同范本
- 协议单位优惠合同范例
- 医药物流合同范本
- 修叉车合同范本
- 劳务分包协议合同范本
- 劳务合同范本已填
- 医院耗材合同范本
- Python金融数据挖掘与分析实战课程教案教学教案
- 2024年地铁车站照明系统安装与维护劳务分包协议3篇
- 脱硫自动化控制-洞察分析
- 医务人员医德医风培训
- 人教版初中历史八上-第2课 第二次鸦片战争
- 2024湖北省金口电排站管理处招聘易考易错模拟试题(共500题)试卷后附参考答案
- 油井供水合同范例
- 2025年人教部编版语文五年级下册教学计划(含进度表)
- 全国计算机等级考试一级试题及答案(5套)
- 银河证券-科创板认知测评题目及答案
- 产品方案设计模板
评论
0/150
提交评论