版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省“皖南八校”2025届高三第二次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.集合,,则()A. B. C. D.2.已知数列是公比为的等比数列,且,,成等差数列,则公比的值为(
)A. B. C.或 D.或3.在中,内角的平分线交边于点,,,,则的面积是()A. B. C. D.4.已知函数,若函数在上有3个零点,则实数的取值范围为()A. B. C. D.5.已知点,点在曲线上运动,点为抛物线的焦点,则的最小值为()A. B. C. D.46.已知函数,若关于的方程恰好有3个不相等的实数根,则实数的取值范围为()A. B. C. D.7.已知直线y=k(x+1)(k>0)与抛物线C相交于A,B两点,F为C的焦点,若|FA|=2|FB|,则|FA|=()A.1 B.2 C.3 D.48.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为()A. B. C. D.9.在等差数列中,若为前项和,,则的值是()A.156 B.124 C.136 D.18010.已知△ABC中,.点P为BC边上的动点,则的最小值为()A.2 B. C. D.11.设,则()A. B. C. D.12.已知双曲线的一条渐近线经过圆的圆心,则双曲线的离心率为()A. B. C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.函数的值域为_________.14.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入袋或袋中.己知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是,则小球落入袋中的概率为__________.15.已知正项等比数列中,,则__________.16.已知复数z1=1﹣2i,z2=a+2i(其中i是虚数单位,a∈R),若z1•z2是纯虚数,则a的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知某种细菌的适宜生长温度为12℃~27℃,为了研究该种细菌的繁殖数量(单位:个)随温度(单位:℃)变化的规律,收集数据如下:温度/℃14161820222426繁殖数量/个2530385066120218对数据进行初步处理后,得到了一些统计量的值,如表所示:20784.11123.8159020.5其中,.(1)请绘出关于的散点图,并根据散点图判断与哪一个更适合作为该种细菌的繁殖数量关于温度的回归方程类型(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表格数据,建立关于的回归方程(结果精确到0.1);(3)当温度为27℃时,该种细菌的繁殖数量的预报值为多少?参考公式:对于一组数据,其回归直线的斜率和截距的最小二成估计分别为,,参考数据:.18.(12分)已知的三个内角所对的边分别为,向量,,且.(1)求角的大小;(2)若,求的值19.(12分)在三棱柱中,四边形是菱形,,,,,点M、N分别是、的中点,且.(1)求证:平面平面;(2)求四棱锥的体积.20.(12分)已知函数(1)当时,证明,在恒成立;(2)若在处取得极大值,求的取值范围.21.(12分)如图,在四棱锥中,侧面为等边三角形,且垂直于底面,,分别是的中点.(1)证明:平面平面;(2)已知点在棱上且,求直线与平面所成角的余弦值.22.(10分)已知函数.(1)讨论的单调性;(2)若在定义域内是增函数,且存在不相等的正实数,使得,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
解一元二次不等式化简集合A,再根据对数的真数大于零化简集合B,求交集运算即可.【详解】由可得,所以,由可得,所以,所以,故选A.【点睛】本题主要考查了集合的交集运算,涉及一元二次不等式解法及对数的概念,属于中档题.2、D【解析】
由成等差数列得,利用等比数列的通项公式展开即可得到公比q的方程.【详解】由题意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故选:D.【点睛】本题考查等差等比数列的综合,利用等差数列的性质建立方程求q是解题的关键,对于等比数列的通项公式也要熟练.3、B【解析】
利用正弦定理求出,可得出,然后利用余弦定理求出,进而求出,然后利用三角形的面积公式可计算出的面积.【详解】为的角平分线,则.,则,,在中,由正弦定理得,即,①在中,由正弦定理得,即,②①②得,解得,,由余弦定理得,,因此,的面积为.故选:B.【点睛】本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.4、B【解析】
根据分段函数,分当,,将问题转化为的零点问题,用数形结合的方法研究.【详解】当时,,令,在是增函数,时,有一个零点,当时,,令当时,,在上单调递增,当时,,在上单调递减,所以当时,取得最大值,因为在上有3个零点,所以当时,有2个零点,如图所示:所以实数的取值范围为综上可得实数的取值范围为,故选:B【点睛】本题主要考查了函数的零点问题,还考查了数形结合的思想和转化问题的能力,属于中档题.5、D【解析】
如图所示:过点作垂直准线于,交轴于,则,设,,则,利用均值不等式得到答案.【详解】如图所示:过点作垂直准线于,交轴于,则,设,,则,当,即时等号成立.故选:.【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.6、D【解析】
讨论,,三种情况,求导得到单调区间,画出函数图像,根据图像得到答案.【详解】当时,,故,函数在上单调递增,在上单调递减,且;当时,;当时,,,函数单调递减;如图所示画出函数图像,则,故.故选:.【点睛】本题考查了利用导数求函数的零点问题,意在考查学生的计算能力和应用能力.7、C【解析】
方法一:设,利用抛物线的定义判断出是的中点,结合等腰三角形的性质求得点的横坐标,根据抛物线的定义求得,进而求得.方法二:设出两点的横坐标,由抛物线的定义,结合求得的关系式,联立直线的方程和抛物线方程,写出韦达定理,由此求得,进而求得.【详解】方法一:由题意得抛物线的准线方程为,直线恒过定点,过分别作于,于,连接,由,则,所以点为的中点,又点是的中点,则,所以,又所以由等腰三角形三线合一得点的横坐标为,所以,所以.方法二:抛物线的准线方程为,直线由题意设两点横坐标分别为,则由抛物线定义得又①②由①②得.故选:C【点睛】本小题主要考查抛物线的定义,考查直线和抛物线的位置关系,属于中档题.8、D【解析】
利用列举法,从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有9种情况,由古典概型概率公式可得结果.【详解】《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,这5部专著中有3部产生于汉、魏、晋、南北朝时期.记这5部专著分别为,其中产生于汉、魏、晋、南北朝时期.从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有共10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有,共9种情况,所以所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为.故选D.【点睛】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有(1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….…这样才能避免多写、漏写现象的发生.9、A【解析】
因为,可得,根据等差数列前项和,即可求得答案.【详解】,,.故选:A.【点睛】本题主要考查了求等差数列前项和,解题关键是掌握等差中项定义和等差数列前项和公式,考查了分析能力和计算能力,属于基础题.10、D【解析】
以BC的中点为坐标原点,建立直角坐标系,可得,设,运用向量的坐标表示,求得点A的轨迹,进而得到关于a的二次函数,可得最小值.【详解】以BC的中点为坐标原点,建立如图的直角坐标系,可得,设,由,可得,即,则,当时,的最小值为.故选D.【点睛】本题考查向量数量积的坐标表示,考查转化思想和二次函数的值域解法,考查运算能力,属于中档题.11、C【解析】试题分析:,.故C正确.考点:复合函数求值.12、B【解析】
求出圆心,代入渐近线方程,找到的关系,即可求解.【详解】解:,一条渐近线,故选:B【点睛】利用的关系求双曲线的离心率,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用换元法,得到,利用导数求得函数的单调性和最值,即可得到函数的值域,得到答案.【详解】由题意,可得,令,,即,则,当时,,当时,,即在为增函数,在为减函数,又,,,故函数的值域为:.【点睛】本题主要考查了三角函数的最值,以及利用导数研究函数的单调性与最值,其中解答中合理利用换元法得到函数,再利用导数求解函数的单调性与最值是解答的关键,着重考查了推理与预算能力,属于基础题.14、【解析】记小球落入袋中的概率,则,又小球每次遇到黑色障碍物时一直向左或者一直向右下落,小球将落入袋,所以有,则.故本题应填.15、【解析】
利用等比数列的通项公式将已知两式作商,可得,再利用等比数列的性质可得,再利用等比数列的通项公式即可求解.【详解】由,所以,解得.,所以,所以.故答案为:【点睛】本题考查了等比数列的通项公式以及等比中项,需熟记公式,属于基础题.16、-1【解析】
由题意,令即可得解.【详解】∵z1=1﹣2i,z2=a+2i,∴,又z1•z2是纯虚数,∴,解得:a=﹣1.故答案为:﹣1.【点睛】本题考查了复数的概念和运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)作图见解析;更适合(2)(3)预报值为245【解析】
(1)由散点图即可得到答案;(2)把两边取自然对数,得,由计算得到,再将代入可得,最终求得,即;(3)将代入中计算即可.【详解】解:(1)绘出关于的散点图,如图所示:由散点图可知,更适合作为该种细菌的繁殖数量关于的回归方程类型;(2)把两边取自然对数,得,即,由.∴,则关于的回归方程为;(3)当时,计算可得;即温度为27℃时,该种细菌的繁殖数量的预报值为245.【点睛】本题考查求非线性回归方程及其应用的问题,考查学生数据处理能力及运算能力,是一道中档题.18、(1)(2)【解析】
利用平面向量数量积的坐标表示和二倍角的余弦公式得到关于的方程,解方程即可求解;由知,在中利用余弦定理得到关于的方程,与方程联立求出,进而求出,利用两角差的正弦公式求解即可.【详解】由题意得,,由二倍角的余弦公式可得,,又因为,所以,解得或,∵,∴.在中,由余弦定理得,即①又因为,把代入①整理得,,解得,,所以为等边三角形,,∴,即.【点睛】本题考查利用平面向量数量积的坐标表示和余弦定理及二倍角的余弦公式解三角形;熟练掌握余弦的二倍角公式和余弦定理是求解本题的关键;属于中档题、常考题型.19、(1)证明见解析;(2).【解析】
(1)要证面面垂直需要先证明线面垂直,即证明出平面即可;(2)求出点A到平面的距离,然后根据棱锥的体积公式即可求出四棱锥的体积.【详解】(1)连接,由是平行四边形及N是的中点,得N也是的中点,因为点M是的中点,所以,因为,所以,又,,所以平面,又平面,所以平面平面;(2)过A作交于点O,因为平面平面,平面平面,所以平面,由是菱形及,得为三角形,则,由平面,得,从而侧面为矩形,所以.【点睛】本题主要考查了面面垂直的证明,求四棱锥的体积,属于一般题.20、(1)证明见解析(2)【解析】
(1)根据,求导,令,用导数法求其最小值.设研究在处左正右负,求导,分,,三种情况讨论求解.【详解】(1)因为,所以,令,则,所以是的增函数,故,即.因为所以,①当时,,所以函数在上单调递增.若,则若,则所以函数的单调递增区间是,单调递减区间是,所以在处取得极小值,不符合题意,②当时,所以函数在上单调递减.若,则若,则所以的单调递减区间是,单调递增区间是,所以在处取得极大值,符合题意.③当时,,使得,即,但当时,即所以函数在上单调递减,所以,即函数)在上单调递减,不符合题意综上所述,的取值范围是【点睛】本题主要考查导数与函数的单调性和极值,还考查了转化化归的思想和运算求解的能力,属于难题.21、(1)证明见解析;(2).【解析】
(1)由平面几何知识可得出四边形是平行四边形,可得面,再由面面平行的判定可证得面面平行;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 泰安新泰市紫光实验中学招聘笔试参考题库及答案解析
- 2025广东中共东莞市委外事工作委员会办公室招聘编外聘用人员1人参考题库附答案
- 2025江苏恒神股份有限公司社会熟练人员招聘77人模拟试卷附答案
- 2025广东汕头市市属医疗卫生机构下半年招聘工作人员132人(公共基础知识)综合能力测试题附答案
- 2025年下半年宜春市市直机关事业单位编外用工公开招聘【82人】备考题库附答案
- 2025广东广州花都城投西城经济开发有限公司第二次招聘项目用笔试备考试题附答案
- 2025河北邯郸市馆陶县选调事业单位人员3人备考题库附答案
- 2026广东佛山市南方医科大学珠江医院三水医院招聘高层次人才4人笔试备考试题及答案解析
- 2026四川雅安市石棉县佳业劳务派遣有限公司应急管理局招聘综合应急救援大队工作人员拟聘用公示笔试备考试题及答案解析
- 2025秋人教版道德与法治八年级上册3.2营造清朗空间同步练习
- 罗茨鼓风机行业发展趋势报告
- 慢性阻塞性肺疾病患者非肺部手术麻醉及围术期管理的专家共识
- 灯谜大全及答案1000个
- 中建办公商业楼有限空间作业专项施工方案
- 急性胰腺炎护理查房课件ppt
- 初三数学期末试卷分析及中考复习建议课件
- GB/T 4074.8-2009绕组线试验方法第8部分:测定漆包绕组线温度指数的试验方法快速法
- 第十章-孤独症及其遗传学研究课件
- 人教版四年级上册语文期末试卷(完美版)
- 防空警报系统设计方案
- 酒店管理用水 酒店厨房定额用水及排水量计算表分析
评论
0/150
提交评论