版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省徐州市市区部分2024届中考数学最后一模试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1 B. C. D.2.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与相似的是()A. B.C. D.3.tan60°的值是()A. B. C. D.4.若不等式组无解,那么m的取值范围是()A.m≤2 B.m≥2 C.m<2 D.m>25.如图,在平面直角坐标系xOy中,△由△绕点P旋转得到,则点P的坐标为()A.(0,1) B.(1,-1) C.(0,-1) D.(1,0)6.下列计算正确的是()A.=±3 B.﹣32=9 C.(﹣3)﹣2= D.﹣3+|﹣3|=﹣67.世界因爱而美好,在今年我校的“献爱心”捐款活动中,九年级三班50名学生积极加献爱心捐款活动,班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数和中位数分别是A.20、20 B.30、20 C.30、30 D.20、308.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D,若AC=9,则AE的值是()A. B. C.6 D.49.下列图形中,可以看作是中心对称图形的是()A. B. C. D.10.点A(-2,5)关于原点对称的点的坐标是()A.(2,5)B.(2,-5)C.(-2,-5)D.(-5,-2)11.比较4,,的大小,正确的是()A.4<< B.4<<C.<4< D.<<412.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和 B.谐 C.凉 D.山二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:ax2-a=______.14.菱形的两条对角线长分别是方程的两实根,则菱形的面积为______.15.如图,在△ABC中,∠C=90°,AC=8,BC=6,点D是AB的中点,点E在边AC上,将△ADE沿DE翻折,使点A落在点A′处,当A′E⊥AC时,A′B=____.16.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.做法中用到全等三角形判定的依据是______.17.一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角a(0°<α<180°).被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为18.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有_____个.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知直线y=mx+n(m≠0,且m,n为常数)与双曲线y=(k<0)在第一象限交于A,B两点,C,D是该双曲线另一支上两点,且A、B、C、D四点按顺时针顺序排列.(1)如图,若m=﹣,n=,点B的纵坐标为,①求k的值;②作线段CD,使CD∥AB且CD=AB,并简述作法;(2)若四边形ABCD为矩形,A的坐标为(1,5),①求m,n的值;②点P(a,b)是双曲线y=第一象限上一动点,当S△APC≥24时,则a的取值范围是.20.(6分)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:坡顶A到地面PO的距离;古塔BC的高度(结果精确到1米).21.(6分)计算:(﹣1)4﹣2tan60°+.22.(8分)先化简,然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.23.(8分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.24.(10分)如图,反比例函数y=(x>0)的图象与一次函数y=2x的图象相交于点A,其横坐标为1.(1)求k的值;(1)点B为此反比例函数图象上一点,其纵坐标为2.过点B作CB∥OA,交x轴于点C,求点C的坐标.25.(10分)如图,一次函数y=k1x+b(k1≠0)与反比例函数的图象交于点A(-1,2),B(m,-1).求一次函数与反比例函数的解析式;在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.26.(12分)如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.27.(12分)如图,已知AD是的中线,M是AD的中点,过A点作,CM的延长线与AE相交于点E,与AB相交于点F.(1)求证:四边形是平行四边形;(2)如果,求证四边形是矩形.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】
直接利用概率的意义分析得出答案.【详解】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,故选B.【点睛】此题主要考查了概率的意义,明确概率的意义是解答的关键.2、B【解析】
根据相似三角形的判定方法一一判断即可.【详解】解:因为中有一个角是135°,选项中,有135°角的三角形只有B,且满足两边成比例夹角相等,故选:B.【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.3、A【解析】
根据特殊角三角函数值,可得答案.【详解】tan60°=故选:A.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.4、A【解析】
先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m的取值范围.【详解】由①得,x<m,由②得,x>1,又因为不等式组无解,所以m≤1.故选A.【点睛】此题的实质是考查不等式组的求法,求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.5、B【解析】试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.试题解析:由图形可知,对应点的连线CC′、AA′的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.故旋转中心坐标是P(1,-1)故选B.考点:坐标与图形变化—旋转.6、C【解析】
分别根据二次根式的定义,乘方的意义,负指数幂的意义以及绝对值的定义解答即可.【详解】=3,故选项A不合题意;﹣32=﹣9,故选项B不合题意;(﹣3)﹣2=,故选项C符合题意;﹣3+|﹣3|=﹣3+3=0,故选项D不合题意.故选C.【点睛】本题主要考查了二次根式的定义,乘方的定义、负指数幂的意义以及绝对值的定义,熟记定义是解答本题的关键.7、C【解析】分析:由表提供的信息可知,一组数据的众数是这组数中出现次数最多的数,而中位数则是将这组数据从小到大(或从大到小)依次排列时,处在最中间位置的数,据此可知这组数据的众数,中位数.详解:根据右图提供的信息,捐款金额的众数和中位数分别是30,30.故选C.点睛:考查众数和中位数的概念,熟记概念是解题的关键.8、C【解析】
由角平分线的定义得到∠CBE=∠ABE,再根据线段的垂直平分线的性质得到EA=EB,则∠A=∠ABE,可得∠CBE=30°,根据含30度的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.【详解】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=1.故选C.9、A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.10、B【解析】
根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).【详解】根据中心对称的性质,得点P(−2,5)关于原点对称点的点的坐标是(2,−5).故选:B.【点睛】考查关于原点对称的点的坐标特征,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).11、C【解析】
根据4=<且4=>进行比较【详解】解:易得:4=<且4=>,所以<4<故选C.【点睛】本题主要考查开平方开立方运算。12、D【解析】分析:本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.详解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.点睛:注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解析】
先提公因式,再套用平方差公式.【详解】ax2-a=a(x2-1)=故答案为:【点睛】掌握因式分解的一般方法:提公因式法,公式法.14、2【解析】
解:x2﹣14x+41=0,则有(x-6)(x-1)=0解得:x=6或x=1.所以菱形的面积为:(6×1)÷2=2.菱形的面积为:2.故答案为2.点睛:本题考查菱形的性质.菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系.15、或7【解析】
分两种情况:①如图1,作辅助线,构建矩形,先由勾股定理求斜边AB=10,由中点的定义求出AD和BD的长,证明四边形HFGB是矩形,根据同角的三角函数列式可以求DG和DF的长,并由翻折的性质得:∠DA'E=∠A,A'D=AD=5,由矩形性质和勾股定理可以得出结论:A'B=;②如图2,作辅助线,构建矩形A'MNF,同理可以求出A'B的长.【详解】解:分两种情况:如图1,过D作DG⊥BC与G,交A'E与F,过B作BH⊥A'E与H,D为AB的中点,BD=AB=AD,∠C=,AC=8,BC=6,AB=10,BD=AD=5,sin∠ABC=,DG=4,由翻折得:∠DA'E=∠A,A'D=AD=5,sin∠DA'E=sin∠A=.DF=3,FG=4-3=1,A'E⊥AC,BC⊥AC,A'E//BC,∠HFG+∠DGB=,∠DGB=,∠HFG=,∠EHB=,四边形HFGB是矩形,BH=FG=1,同理得:A'E=AE=8-1=7,A'H=A'E-EH=7-6=1,在Rt△AHB中,由勾股定理得:A'B=.如图2,过D作MN//AC,交BC与于N,过A'作A'F//AC,交BC的延长线于F,延长A'E交直线DN于M,A'E⊥AC,A'M⊥MN,A'E⊥A'F,∠M=∠MA'F=,∠ACB=,∠F=∠ACB=,四边形MA'FN県矩形,MN=A'F,FN=A'M,由翻折得:A'D=AD=5,Rt△A'MD中,DM=3,A'M=4,FN=A'M=4,Rt△BDN中,BD=5,DN=4,BN=3,A'F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A'B=;综上所述,A'B的长为或.故答案为:或.【点睛】本题主要考查三角形翻转后的性质,注意不同的情况需分情况讨论.16、SSS.【解析】
由三边相等得△COM≌△CON,即由SSS判定三角全等.做题时要根据已知条件结合判定方法逐个验证.【详解】由图可知,CM=CN,又OM=ON,∵在△MCO和△NCO中,∴△COM≌△CON(SSS),∴∠AOC=∠BOC,即OC是∠AOB的平分线.故答案为:SSS.【点睛】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.17、72°或144°【解析】
∵五次操作后,发现赛车回到出发点,∴正好走了一个正五边形,因为原地逆时针方向旋转角a(0°<α<180°),那么朝左和朝右就是两个不同的结论所以∴角α=(5-2)•180°÷5=108°,则180°-108°=72°或者角α=(5-2)•180°÷5=108°,180°-72°÷2=144°18、1【解析】试题解析:∵袋中装有6个黑球和n个白球,
∴袋中一共有球(6+n)个,
∵从中任摸一个球,恰好是黑球的概率为,
∴,
解得:n=1.
故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)①k=5;②见解析,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;(2)①;②0<a<1或a>5【解析】
(1)①求出直线的解析式,利用待定系数法即可解决问题;②如图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;(2)①求出A,B两点坐标,利用待定系数法即可解决问题;②分两种情形求出△PAC的面积=24时a的值,即可判断.【详解】(1)①∵,,∴直线的解析式为,∵点B在直线上,纵坐标为,∴,解得x=2∴,∴;②如下图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;(2)①∵点在上,∴k=5,∵四边形ABCD是矩形,∴OA=OB=OC=OD,∴A,B关于直线y=x对称,∴,则有:,解得;②如下图,当点P在点A的右侧时,作点C关于y轴的对称点C′,连接AC,AC′,PC,PC′,PA.∵A,C关于原点对称,,∴,∵,当时,∴,∴,∴a=5或(舍弃),当点P在点A的左侧时,同法可得a=1,∴满足条件的a的范围为或.【点睛】本题属于反比例函数与一次函数的综合问题,熟练掌握待定系数法解函数解析式以及交点坐标的求法是解决本题的关键.20、(1)坡顶到地面的距离为米;移动信号发射塔的高度约为米.【解析】
延长BC交OP于H.在Rt△APD中解直角三角形求出AD=10.PD=24.由题意BH=PH.设BC=x.则x+10=24+DH.推出AC=DH=x﹣14.在Rt△ABC中.根据tan76°=,构建方程求出x即可.【详解】延长BC交OP于H.∵斜坡AP的坡度为1:2.4,∴,设AD=5k,则PD=12k,由勾股定理,得AP=13k,∴13k=26,解得k=2,∴AD=10,∵BC⊥AC,AC∥PO,∴BH⊥PO,∴四边形ADHC是矩形,CH=AD=10,AC=DH,∵∠BPD=45°,∴PH=BH,设BC=x,则x+10=24+DH,∴AC=DH=x﹣14,在Rt△ABC中,tan76°=,即≈4.1.解得:x≈18.7,经检验x≈18.7是原方程的解.答:古塔BC的高度约为18.7米.【点睛】本题主要考查了解直角三角形,用到的知识点是勾股定理,锐角三角函数,坡角与坡角等,解决本题的关键是作出辅助线,构造直角三角形.21、1【解析】首先利用乘方、二次根式的性质以及特殊角的三角函数值、零指数幂的性质分别化简求出答案.解:原式==1.“点睛”此题主要考查了实数运算,正确化简各数是解题关键.,22、【解析】
根据分式的减法和除法可以化简题目中的式子,然后从﹣<x<的范围内选取一个使得原分式有意义的整数作为x的值代入即可解答本题.【详解】解:÷(﹣x+1)====,当x=﹣2时,原式=.【点睛】本题考查分式的化简求值、估算无理数的大小,解答本题的关键是明确分式化简求值的方法.23、木竿PQ的长度为3.35米.【解析】
过N点作ND⊥PQ于D,则四边形DPMN为矩形,根据矩形的性质得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长.试题解析:【详解】解:过N点作ND⊥PQ于D,则四边形DPMN为矩形,∴DN=PM=1.8m,DP=MN=1.1m,∴,∴QD==2.25,∴PQ=QD+DP=2.25+1.1=3.35(m).答:木竿PQ的长度为3.35米.【点睛】本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键.24、(1)k=11;(1)C(2,0).【解析】试题分析:(1)首先求出点A的坐标为(1,6),把点A(1,6)代入y=即可求出k的值;
(1)求出点B的坐标为B(4,2),设直线BC的解析式为y=2x+b,把点B(4,2)代入求出b=-9,得出直线BC的解析式为y=2x-9,求出当y=0时,x=2即可.试题解析:(1)∵点A在直线y=2x上,其横坐标为1.∴y=2×1=6,∴A(1,6),把点A(1,6)代入,得,解得:k=11;(1)由(1)得:,∵点B为此反比例函数图象上一点,其纵坐标为2,∴,解得x=
4,∴B(4,2),∵CB∥OA,∴设直线BC的解析式为y=2x+b,把点B(4,2)代入y=2x+b,得2×4+b=2,解得:b=﹣9,∴直线BC的解析式为y=2x﹣9,当y=0时,2x﹣9=0,解得:x=2,∴C(2,0).25、(1)反比例函数的解析式为;一次函数的解析式为y=-x+1;(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【解析】
(1)将A点代入求出k2,从而求出反比例函数方程,再联立将B点代入即可求出一次函数方程.(2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根据坐标距离公式计算即可.【详解】(1)把A(-1,2)代入,得到k2=-2,∴反比例函数的解析式为.∵B(m,-1)在上,∴m=2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度建筑工程设计合同标的定义与服务范围
- 基于2024年度标准的智能工厂设计与实施合同
- 2024卫生间隔断门安装合同协议书
- 二零二四年度肉鸡饲料物流与配送合同
- 2024年国际期货交易平台建设合同
- 2024年度铝单板购销合同的违约责任合同2篇
- 盾构项目2024年度劳务分包合同2篇
- 二零二四年度煤炭采购合同(标的:0万吨煤炭)3篇
- 2024年19号项目综合建设运营及后期移交合同版B版
- 2024会所装修合同浴室装修合同
- 产业园物业管理方案
- 海水养殖与水域污染治理
- 钢筋拉伸试验课件
- 《比特币完整介绍》课件
- 办公室人员颈肩腰腿痛的预防和治疗课件
- 急诊科护士的院内急救团队协作
- 生态环境安全隐患排查
- Elisa检测技术课件
- 社会责任SWOT分析
- (完整版)公开课基因指导蛋白质的合成课件
- 高速公路安全行车
评论
0/150
提交评论