版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
概率与统计的综合应用
题型一:决策问题
题型二:道路通行问题
题型三:保险问题
题型四:概率最值问题
题型五:放回与不放回问题
题型六:体育比赛问题
题型七:几何问题
题型八:彩票问题
题型九:纳税问题
题型十:疾病问题
题型十一:建议问题
题型十二:概率与数列递推问题
题型十三:硬币问题
题型十四:自主选科问题
题型十五:高尔顿板问题
题型十六:自主招生问题
题型十七:顺序排位问题
题型十八:博彩问题
Q〔必考题型归纳〕O
题型一:决策问题
蒯工(2023•甘肃兰州•高三兰化一中校考期中)据悉强基计划的校考由试点高校自主命题,校考过程中达到
笔试优秀才能进入面试环节.已知甲、乙两所大学的笔试环节都设有三门考试科目且每门科目是否达
到优秀相互独立.若某考生报考甲大学,每门科目达到优秀的概率均为:,若该考生报考乙大学,每门
科目达到优秀的概率依次为4,六,九,其中0V九<1.
65
(1)若n=2,分别求出该考生报考甲、乙两所大学在笔试环节恰好有一门科目达到优秀的概率;
(2)强基计划规定每名考生只能报考一所试点高校,若以笔试过程中达到优秀科目个数的期望为依据
作出决策,该考生更希望进入甲大学的面试环节,求九的范围.
【解析】⑴设该考生报考甲大学恰好有一门笔试科目优秀为事件4则P⑷=或•(春)•住)2=4;
该考生报考乙大学恰好有一门笔试科目优秀为事件B,则P(B)=^x4x^-+-^-x^-x-?-+^-x
653653b
AxX=IL
5390,
(2)该考生报考甲大学达到优秀科目的个数设为X,
依题意,,则E(X)=3X1=1,
该同学报考乙大学达到优秀科目的个数设为y,随机变量y的可能取值为:0,1,2,3.
-1•
P(Y-0)=|x|(l-n)=^,F(y=l)=|x4(l-n)+|x|(l-n)+-|-x|n=^±^,
OOZOOOOOOOU
1-)/-\7-C\\5^2I1^.3I1y.2/1\2+11??/T~\/-rrQ\1^,22Tli___TL
F(y=2)=—x—n+—x—n+—x—(l-n)=一——,F(y=3)=—x—n=-=—,
65656530653015
随机变量y的分布列:
Y0123
l-n13+2n2+llnn
P
2303015
九
颐y)=0xl—n+1x13+2h2X2+114+3X—17+30
2303015--30~~,
因为该考生更希望进入甲大学的面试,则石(y)vE(x),即‘吟警VI,解得OVnV圣,
OUoU
所以71的范围为:OVnV
oU
吼2(2023•全国•高三专题练习)2022年北京冬奥会后,由一名高山滑雪运动员甲组成的专业队,与两名高
山滑雪爱好者乙、丙组成的业余队进行友谊比赛,约定赛制如下:业余队中的两名队员轮流与甲进行比
赛,若甲连续赢两场则专业队获胜;若甲连续输两场则业余队获胜;若比赛三场还没有决出胜负,则视
为平局,比赛结束.已知各场比赛相互独立,每场比赛都分出胜负,且甲与乙比赛,甲赢的概率为甲
与丙比赛,甲赢的概率为P,其中
/O
(1)若第一场比赛,业余队可以安排乙与甲进行比赛,也可以安排丙与甲进行比赛.请分别计算两种安
排下业余队获胜的概率;若以获胜概率大为最优决策,问:业余队第一场应该安排乙还是丙与甲进行比
赛?
(2)为了激励专业队和业余队,赛事组织规定:比赛结束时,胜队获奖金6万元,负队获奖金3万元;若平
局,两队各获奖金3.6万元.在比赛前,已知业余队采用了(1)中的最优决策与甲进行比赛,设赛事组织
预备支付的奖金金额共计X万元,求X的数学期望E(X)的取值范围.
【解析】(1)第一场比赛,业余队安排乙与甲进行比赛,业余队获胜的概率为:
吕=:x(l—p)+~|"X(l_p)x-i-=-1-(l-p)
oooy
第一场比赛,业余队安排丙与甲进行比赛,业余队获胜的概率为:
为=(i-p)XXX(i-p)=9(i—p2)
4o-+PToo
因为所以R—E=1x(i—M仔—
所以,业余队第一场应该安排乙与甲进行比赛.
(2)由已知X=9万元,或X=7.2万元
由(1)知,业余队最优决策是第一场应该安排乙与甲进行比赛.
此时,业余队获胜的概率为:R=^(l—p)
专业队获胜的概率为乌=右+[义",=聂
所以,非平局的概率为「底=9)=/+8=得+当)
yo
平局的概率为P(X=7.2)=1—^—玛=春一%
93
X的分布列为:
X97.2
P(X)
•2・
5,141
了+丑
X的期望为E(X)=9X佟+为)+7.2X佟-D=8.2+0.6p
由日VpV4■,所以数学期望E(X)的取值范围为(8.5,8.6)(单位:万元)
/O
蒯旦(2023•江西吉安・高三吉安三中校考阶段练习)2020年以来,新冠疫情对商品线下零售影响很大.某商
家决定借助线上平台开展销售活动.现有甲、乙两个平台供选择,且当每件商品的售价为a(300WaW
500)元时,从该商品在两个平台所有销售数据中各随机抽取100天的日销售量统计如下,
商品日销售量(单位:件)678910
甲平台的天数1426262410
乙平台的天数1025352010
假设该商品在两个平台日销售量的概率与表格中相应日销售量的频率相等,且每天的销售量互不影
响,
⑴求“甲平台日销售量不低于8件”的概率,并计算“从甲平台所有销售数据中随机抽取3天的日销售
量,其中至少有2天日销售量不低于8件”的概率;
(2)已知甲平台的收费方案为:每天佣金60元,且每销售一件商品,平台收费30元;乙平台的收费方案
为:每天不收取佣金,但采用分段收费,即每天销售商品不超过8件的部分,每件收费40元,超过8件的
部分,每件收费35元.某商家决定在两个平台中选择一个长期合作,从日销售收入(单价x日销售量
—平台费用)的期望值较大的角度,你认为该商家应如何决策?说明理由.
【解析】(1)令事件4=“甲平台日销售量不低于8件”,
则P(A)=26+24+10__3_
1'1005,
令事件B=”从甲平台所有销售数据中随机抽取3天的日销售量,其中至少有2天日销售量不低于8
件”,
则P(B)=C皑菅+c吟月粽
⑵设甲平台的日销售收入为X,则X的所有可能取值为6a-240,7a-270,8a-300,9a-330,10a-
360.
所以,X的分布列为
X6a-2407a-2708CL—3009a—33010a-360
1426262410
P
100100100100100
所以,E(X)=(6a—240)x+(7a—270)x+(8a—300)x+(9a—330)x+(10a—
360)X忐=7.95297,
设乙平台的日销售收入为丫,则¥的所有可能取值为6a-240,7a-280,8a-320,9a-355,10a-390.
所以,y的分布列为:
Y6a-2407a-2808a—3209a-35510a-390
1025352010
p
100100100100100
-3•
所以,E(K)=(6a—240)x+(7a—280)xy畀+(8a—320)x+(9a—355)x+(10a—
390)x需=7.95a-316.
所以,E(y)-E(X)=0.05a-19,
令0.05a-19>0得a>380,令0.05a-19V0得a<380
所以,当300Wa<380时,选择甲平台;当a=380时,甲乙平台均可;当380<aW500时,选择乙平台.
跟踪训练1:(2023.江西.校联考模拟预测)某学校举行“百科知识”竞赛,每个班选派一位学生代表参加.
某班经过层层选拔,李明和王华进入最后决赛,决赛方式如下:给定4个问题,假设李明能且只能对其
中3个问题回答正确,王华对其中任意一个问题回答正确的概率均为日.由李明和王华各自从中随机
抽取2个问题进行回答,而且每个人对每个问题的回答均相互独立.
(1)求李明和王华回答问题正确的个数均为2的概率;
(2)设李明和王华回答问题正确的个数分别为x和y,求的期望E(X)、E(y)和方差o(x)、
o(y),并由此决策派谁代表该班参加竞赛更好.
【解析】⑴•.•李明回答问题正确的个数为2的概率pi=尊=曰=《;
62
王华回答问题正确的个数为2的概率P2=(4)2=2;
/.李明和王华回答问题正确的个数均为2的概率p=pi°2=4X义=旦.
21632
(2)由题意知:李明回答问题正确个数X所有可能的取值为1,2,
••.P(X=1)=3=总4,P(X=2)=鲁=卷~,
.•.S(X)=1X1+2X|=1,P(X)-(1-1)2X^+(2-1)2X1=^;
•.•王华回答问题正确的个数y〜风2,a),
.•.S(Y)=2x1=1,D(Y)=2x|x(l-1)=-|-;
;E(X)=E(y),D(X)<D(Y),:.派李明代表该班参加竞赛更好.
跟踪训练[2J(2023•全国•高三专题练习)根据某地区气象水文部门长期统计,可知该地区每年夏季有小洪
水的概辜为0.25,有大洪水的概率为0.05.今年夏季该地区某工地有许多大型设备,遇到大洪水时要
损失60000元,遇到小洪水时要损失20000元,为保护设备,有以下3种方案:
方案1:修建保护围墙,建设费为3000元,但围墙只能防小洪水;
方案2:修建保护大坝,建设费为7000元,能够防大洪水;
方案3:不采取措施
工地的领导该如何决策呢?
【解析】用',X2,X3分别表示方案1,2,3的损失,
第一方案,建保护墙,建设费为3000元,但围墙只能防小洪水,
无大洪水有大洪水
损失300063000
概率0.950.05
平均损失右(Xj=3000x0.95+63000x0.05=6000.
第二方案:建保护大坝,建设费为7000元,能够防大洪水,
-4•
E(X2)=7000.
第三方案:不采取措施.
无洪水有小洪水有大洪水
损失02000060000
概率0.70.250.05
平均损失E(XJ=60000X0.05+20000x0.25=8000.
因为E(X3)>E(X?)>E(XJ
综上,采取方案一较好.
题型二:道路通行问题
翻11(2023・重庆•高三重庆市育才中学校考阶段练习)9月6日位于重庆朝天门的来福士广场开业,成了网
红城市的又一打卡胜地重庆育才谢家湾校区与来福士之间的驾车往返所需时间为T,T只与道路畅通
状况有关,对其容量为500的样本进行统计,结果如下:
T(小时)0.80.911.1
频数(次)10015020050
以这500次驾车往返所需时间的频率代替某人1次驾车往返所需时间的概率.
⑴记T的期望为E(T),求P(TVE(T));
(2)某天有3位教师独自驾车从谢家校区返于来福士,记X表示这3位教师中驾车所用时间少于E(T)
的人数,求X的分布列与E(X).
【解析】(1)P(T=0.8)=黑=0.2,
P(T=0.9)=鬻=0.3,
叩=1)=熊=。-4,
P(T=1])=瑞=。」,
的分布列为:
T0.80.911.1
P0.20.30.40.1
E(T)=0.8X0.2+0.9X0.3+1X0.4+1.1x0.1=0.94,
・・.P(T<E(T))=P(T=0.8)+P(T=0.9)=0.2+0.3=0.5.
(2)某天有3位教师独自驾车从谢家校区返于来福士,记X表示这3位教师中驾车所用时间少于E(T)
的人数,
・・・P(X=O)=%)3=9
P(X=l)=^(1)(1)2=f,
P(X=2)=。%)招)=卷,
P(X=3)=Cf(^)3=1,
・・・X的分布列为:
•5・
X0123
1331
P
8888
E(X)=3x/='.
吼2(2023•湖北・统考一模)交通指数是指交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指
数值,记交通指数为T,其范围为[0,10],分别有五个级别:TE[0,2),畅通;TE[2,4),基本畅通;TE
[4,6),轻度拥堵;TC[6,8),中度拥堵;TC[8,10],严重拥堵.在晚高峰时段(中用2),从某市交通指挥
中心选取了市区20个交通路段,依据其交通指数数据绘制的频率分布直方图如图所示.
(1)求出轻度拥堵、中度拥堵、严重拥堵的路段的个数;
(2)用分层抽样的方法从轻度拥堵、中度拥堵、严重拥堵的路段中共抽取6个路段,求依次抽取的三个级
别路段的个数;
(3)从(2)中抽取的6个路段中任取2个,求至少有1个路段为轻度拥堵的概率.
【解析】(1)由频率分布直方图得,这20个交通路段中,
轻度拥堵的路段有(0.1+0.2)X1X20=6(个),
中度拥堵的路段有(0.25+0.2)x1x20=9(个),
严重拥堵的路段有(0.1+0.05)xlX2O=3(个).
⑵由⑴知,拥堵路段共有6+9+3=18(个),按分层抽样,从18个路段抽取6个,则抽取的三个级别
路段的个数分别为鸟x6=2,&x9=3,&x3=l,即从交通指数在[4,6),[6,8),[8,10]的路段中
lololo
分别抽取的个数为2,3,1.
⑶记抽取的2个轻度拥堵路段为A,4,抽取的3个中度拥堵路段为瓦,抽取的1个严重拥堵
路段为G,则从这6个路段中抽取2个路段的所有可能情况为:(4,4),(4,3),(4,玛),(4,4),
(40,(45),(4,5),(42,星),(4,G),(5B),(B1B),(瓦玛),B,G),(场。),共15
种,其中至少有1个路段为轻度拥堵的情况为:(4,4),(4,马),(4,玛),(4,属),(4,。1),(4,瓦),
(4,5),(48),(4G),共9种.
所以所抽取的2个路段中至少有1个路段为轻度拥堵的概率为三=§.
155
蒯3(2023・四川眉山・高三四川省眉山第一中学阶段练习)随着我国经济的不断深入发展,百姓的生活也不
断的改善,尤其是近几年汽车进入了千家万户,这也给城市交通造成了很大的压力,为此交警部门通过
对交通拥堵的研究提出了交通拥堵指数这一全新概念,交通拥堵指数简称交通指数,是综合反映道路
网畅通或拥堵的概念.记交通指数为T,其范围为[0,9],分别有5个级别:TE[0,2)畅通;TC[2,4)
基本畅通;TE[4,6)轻度拥堵;TE[6,8)中度拥堵;TE[8,9]严重拥堵.早高峰时段(T>3),从北京
市交通指挥中心随机选取了五环以内50个交通路段,依据交通指数数据绘制的部分频率分布直方图如
图所示:
,6,
(1)据此直方图估算交通指数TC[4,8)时的中位数和平均数;
(2)据此直方图求出早高峰二环以内的3个路段至少有两个严重拥堵的概率是多少?
(3)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为35分钟,中度拥堵为
45分钟,严重拥堵为60分钟,求此人所用时间的数学期望.
【解析】(1)由直方图知,TC[4,8]时交通指数的中位数为5+1x(02/0.24)=35/6
TE[4,8]时交通指数的平均数为4.5X0.2+5.5X0.24+6.5X0.2+7.5X0.16=4.72.
(2)设事件力为“一条路段严重拥堵",则F(A)=0.1,
则3条路段中至少有两条路段严重拥堵的概率为:P=或x(J?x(1—+或x(4『=启,
所以3条路段中至少有两条路段严重拥堵的概率为高
(3)由题意,所用时间力的分布列如下表:
X30354560
P0.10.440.360.1
则的二30x0.1+35X0.44+45x0.36+60x0.1=40.6,
所以此人经过该路段所用时间的数学期望是40.6分钟.
跟踪训练[1.(2023.江西.校联考模拟预测)“低碳出行”,一种降低“碳”的出行,以低能耗、低污染为基础,
是环保的深层次体现,在众多发达国家被广大民众接受并执行,S市即将投放一批公共自行车以方便
市民出行,减少污染,缓解交通拥堵,现先对100人做了是否会考虑选择自行车出行的调查,结果如下
表.
⑴如果把45周岁以下人群定义为“青年”,完成下列2x2列联表,并问你有多少把握认为该地区市民
是否考虑单车与他(她)是不是“青年人,,有关?
年龄考虑骑车不考虑骑车
15以下63
[15,30)166
[30,45)136
[45,60)1416
[60,75)59
75以上15
合计5545
骑车不骑车合计
•7・
45岁以下
45岁以上
合计100
参考:KJ(a+b)(a+c)(c+d)(b+d)'*Q+b+c+d
p(R2>k)0.150.100.050.0250.0100.0050.001
k2.072.703.845.026.637.8710.82
(2)S市为了鼓励大家骑自行车上班,为此还专门在几条平时比较拥堵的城市主道建有无障碍自行车
道,该市市民小明家离上班地点10km,现有两种.上班方案给他选择;
方案一:选择自行车,走无障碍自行车道以19km/h的速度直达上班地点.
方案二:开车以30km/h的速度上班,但要经过A、B、。三个易堵路段,三个路段堵车的概率分别是
且是相互独立的,并且每次堵车的时间都是10分钟(假设除了堵车时间其他时间都是匀速行驶)
ZZQ
若仅从时间的角度考虑,请你给小明作一个选择,并说明理由.
【解析】(1)根据题目所给数据填写2x2列联表如下:
骑车不骑车合计
45岁以下351550
45岁以上203050
合计5545100
s,on(ad-bcY100(35x30-15X20)2八》
所以R2=------'、/_1-----=_3"=9.09>7.87
(a+b)(a+c)(c+d)(b+d)55x45x50X50
所以有99.5%的把握认为该地区市民是否考虑单车与他(她)是不是“青年人”有关.
(2)方案一:选择自行车,走无障碍自行车道以19km/h的速度直达上班地点,
则所需时间为:=
方案二:开车以30km/h的速度上班,但要经过4、B、C三个易堵路段,分别令三个路段堵车记为事件
4B、且P⑷=y,F(B)=y,P©=:,且4B、。相互独立的,并且每次堵车的时间都是10分钟
(假设除了堵车时间其他时间都是匀速行驶)
所以在路上遇上堵车的概率为:P=1—网无呵)=1—P⑷P(A)P©=1—Jx2x得=!,
ZZDO
故方案二所需时间为:益=2+言X4=条儿
306O36
因为力1>力2,所以仅从时间的角度考虑,应选方案二省时间.
跟踪训练:2J(2023•全国•高三专题练习)某人某天的工作是驾车从A地出发,到两地办事,最后返回
A地,A,B,C,三地之间各路段行驶时间及拥堵概率如下表
路段正常行驶所用时间(小时)上午拥堵概率下午拥堵概率
AB10.30.6
BC20.20.7
CA30.30.9
-8-
若在某路段遇到拥堵,则在该路段行驶时间需要延长1小时.
现有如下两个方案:
方案甲:上午从A地出发到口地办事然后到达。地,下午从。地办事后返回人地;
方案乙:上午从人地出发到。地办事,下午从。地出发到达B地,办完事后返回A地.
(1)若此人早上8点从A地出发,在各地办事及午餐的累积时间为2小时,且采用方案甲,求他当日18
点或18点之前能返回A地的概率.
(2)甲乙两个方案中,哪个方案有利于办完事后更早返回A地?请说明理由.
【解析]【解析】(1)由题可知能按时返回的充要条件是拥堵路段不超过两段,则不能按时返回时有三段
路段拥堵,二者互为对立事件,记“不能按时返回为事件4'则P(A)=0.3x0.2x0.9=0.054,
所以能够按时返回的概率P(N)=0.946,
(2)设某段路正常行驶时间为x,拥堵的概率为p,
则该路段行驶时间x的分布列为
行驶时间2Xx+1
概率P1—PP
故Ex—rr(l—p)+{x+l)p—x+p,
上午48、B。、C4路段行驶时间期望值分别为1.3小时2.2小时、3.3小时,
下午4B、BC、C4路段行驶时间期望值分别为1.6小时2.7小时3.9小时,
设采用甲方案所花费总行驶时间为Y,则EY=1.3+2.2+3.9=7.4小时,
设采用乙方案所花费总行驶时间为Z,则EZ=3.3+2.7+1.6=7.6小时,
因此采用甲方案能更早返回.
题型三:保险问题
题工(2023•广东湛江•高三统考阶段练习)某单位有员工50000人,一保险公司针对该单位推出一款意外险
产品,每年每位职工只需要交少量保费,发生意外后可一次性获得若干赔偿金.保险公司把该单位的所
有岗位分为三类工种,从事三类工种的人数分布比例如饼图所示,且这三类工种每年的赔付
概率如下表所示:
工种类别ABC
121
赔付概率
105105104
职工类别分布饼图
•9・
对于A,三类工种,职工每人每年保费分别为a元、a元、6元,出险后的赔偿金额分别为100万元
、:L00万元、50万元,保险公司在开展此项业务过程中的固定支出为每年20万元.
(1)若保险公司要求每年收益的期望不低于保费的15%,证明:153a+176>4200.
(2)现有如下两个方案供单位选择:方案一:单位不与保险公司合作,职工不交保险,出意外后单位自行
拿出与保险公司提供的等额赔偿金赔付给出意外的职工,单位开展这项工作的固定支出为每年35万
元;方案二:单位与保险公司合作,a=35,6=60,单位负责职工保费的80%,职工个人负责20%,出险
后赔偿金由保险公司赔付,单位无额外专项开支.根据该单位总支出的差异给出选择合适方案的建议.
【解析】(1)设工种。职工的每份保单保险公司的效益为随机变量X,y,z,
则随机变量X的分布列为:
Xaa-lOOxlO4
1
P1.....-
105105
随机变量y的分布列为:
Yaa-100x104
2
P1-
105
随机变量Z的分布列为:
Zb6-50x104
1
P
一卡104
保险公司期望收而_为EX=ax(1—L)+(a—100x104)x=a—10,
EY=ax(1---)+(a-100x104)x(—j=a-20,
EZ=bx(l—"+(b—50xl04)x曰)=b—5。,
根据要求(a-10)X50000x0.6+(a-20)x50000X0.3+(fe-50)X50000x0.1-20x104>(ax
50000x0.6+ax50000x0.3+bx50000x0.1)x0.15,
整理可得(9a+b)x85)21000,
所以153a+176>4200得证;
(2)若该企业不与保险公司合作,则安全支出,即赔偿金的期望值为:
50000(0.6x七x100x1Q4+0.3x京x100x1()4+0」x木x50x104)+35x104
=100X104;
若该企业与保险公司合作,则安全支出,
即保费为50000x(0.6xa+0.3xa+0.1xb)x0.8=(0.9a+0.1b)x40000,
由a=35,b=60,(0.9a+0.1b)x40000=150X104>100xIO4,
所以方案一^总支出较少,故选方案一.
题2(2023•新疆克拉玛依・统考三模)已知某保险公司的某险种的基本保费为a(单位:元),继续购买该险种
的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数0123〉4
保费(元)0.9aa1.5a2.5a4a
-10•
随机调查了该险种的400名续保人在一年内的出险情况,得到下表:
出险次数0123〉4
频数2808024124
该保险公司这种保险的赔付规定如下:
出险序次第1次第2次第3次第4次第5次及以上
赔付金额(元)2.5a1.5aa0.5a0
将所抽样本的频率视为概率.
(1)求本年度续保人保费的平均值的估计值;
(2)按保险合同规定,若续保人在本年度内出险3次,则可获得赔付(2.5a+L5a+a)元;若续保人在本
年度内出险6次,则可获得赔付(2.5a+L5a+a+0.5a)元;依此类推,求本年度续保人所获赔付金额的
平均值的估计值.
【解析】(1)由题意可得
保费(元)0.9aa1.5a2.5a4a
概率0.70.20.060.030.01
本年度续保人保费的平均值的估计值为
0.9aX0.7+QX0.2+1.5ax0.06+2.5ax0.03+4Qx0.01=1.035a
(2)由题意可得
赔偿金额(元)02.5a4a5a5.5a
概率0.70.20.060.030.01
本年度续保人所获赔付金额的平均值的估计值
0X0.7+2.5ax0.2+4Qx0.06+5Qx0.03+5.5ax0.01=0.945a
(13(2023•广东深圳•高三校联考期末)已知某保险公司的某险种的基本保费为a(单位:元),继续购买该险
种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数0123)4
保费(元)0.9aa1.5a2.5a4a
随机调查了该险种的400名续保人在一年内的出险情况,得到下表:
出险次数0123>4
频数2808024124
该保险公司这种保险的赔付规定如下:
出险序次第1次第2次第3次第4次第5次及以上
赔付金额(元)2.5a1.5aa0.5a0
将所抽样本的频率视为概率.
(1)求本年度续保人保费的平均值的估计值;
(2)按保险合同规定,若续保人在本年度内出险3次,则可获得赔付(2.5a+L5a+a)元;依此类推,求本
年度续保人所获赔付金额的平均值的估计值;
⑶续保人原定约了保险公司的销售人员在上午10:30~11:30之间上门签合同,因为续保人临时有事,外
出的时间在上午10:45~11:05之间,请问续保人在离开前见到销售人员的概率是多少?
-11•
【解析】(1)由题意可得
保费(元)0.9aa1.5a2.5a4a
概率0.70.20.060.030.01
本年度续保人保费的平均值的估计值为
0.9ax0.7+ax0.2+1.5ax0.06+2.5ax0.03+4ax0.01=1.035a
(2)由题意可得
赔偿金额(元)02.5a4a5a5.5a
概率0.70.20.060.030.01
本年度续保人所获赔付金额的平均值的估计值
0X0.7+2.5ax0.2+4ax0.06+5ax0.03+5.5aX0.01=0.945a
(3)设保险公司销售人员到达的时间为c,续保人离开的时间为y,(c,g)看成平面上的点,全部结果所
构成的区域为Q={&y)411.5,
则区域Q的面积S(Q)=1x9=!
oo
事件A表示续保人在离开前见到销售人员,所构成的区域为A=
(x,y)10.511.5,
即图中的阴影部分,其面积SG4)=Jx(:+4)x《=磊
44_L//OOL)
5
所以P(A)=平=,,即续保人在离开前见到销售人员的概率是4
跟踪训练1一(2023•山东潍坊•校联考一模)某保险公司针对一个拥有20000人的企业推出一款意外险产
品,每年每位职工只需要交少量保费,发生意外后可一次性获得若干赔偿金.保险公司把企业的所有岗
位共分为力、B、。三类工种,从事这三类工种的人数分别为12000>6000>2000,由历史数据统计出三
类工种的赔付频率如下表(并以此估计赔付概率):
工种类别ABc
121
赔付频率
105105104
已知A、B、。三类工种职工每人每年保费分别为25元、25元、40元,出险后的赔偿金额分别为100万
元、100万元、50万元,保险公司在开展此业务的过程中固定支出每年10万元.
(1)求保险公司在该业务所获利润的期望值;
(2)现有如下两个方案供企业选择:
方案1:企业不与保险公司合作,职工不交保险,出意外企业自行拿出与保险公司提供的等额赔偿金赔
-12•
偿付给出意外的职工,企业开展这项工作的固定支出为每年12万元;
方案2:企业与保险公司合作,企业负责职工保费的70%,职工个人负责30%,出险后赔偿金由保险公司
赔付,企业无额外专项开支.
根据企业成本差异给出选择合适方案的建议.
【解析】⑴设工种4B、。职工的每份保单保险公司的收益为随机变量x、y、z,则x、y、z的分布
列为:
X2525-100xIO4
1
p1———
105105
Y2525-100X104
2
P1--
105105
Z4040-50x104
1
PX-J-
104104
E(X)=25x(1—+(25—100x104)x=15,
E(y)=25x(1-]2.)+(25-100x104)x磊=5,
E(Z)=40X(1—七)+(40-50x104)x卡=-10,
保险公司的利润的期望值为12000X15+6000X5-2000x10—100000=90000,
保险公司在该业务所获利润的期望值为9万元.
(2)方案1:企业不与保险公司合作,则企业每年安全支出与固定开支共为:
12000x100xIO,x工+6000x100x104x+2000x50x10“x二+12x104=46x104,
10510°104
方案2:企业与保险公司合作,则企业支出保险金额为:
(12000X25+6000x25+2000x40)x0.7=37.1x104,
46X104>37.1X104,
建议企业选择方案2.
跟踪训练(2023.全国.高考真题)购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保
人在购买保险的一年度内出险,则可以获得10000元的赔偿金.假定在一年度内有10000人购买了
这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10000元的概率
为1—0.9991°:
(I)求一投保人在一年度内出险的概率P;
(II)设保险公司开办该项险种业务除赔偿金外的成本为50000元,为保证盈利的期望不小于0,求每
位投保人应交纳的最低保费(单位:元).
【解析】各投保人是否出险互相独立,且出险的概率都是P,记投保的10000人中出险的人数为
则£~(101p).
(I)记A表示事件:保险公司为该险种至少支付10000元赔偿金,则不发生当且仅当6=0,
P(A)=1-P(A)
=1-P(£=0)
=1—(15,
-13•
又P(A)=l—0.999叫
故p=0.001.
(H)该险种总收入为10000a元,支出是赔偿金总额与成本的和.
支出lOOOOf+50000,
盈利7]=10000a-(lOOOOf+50000),
盈利的期望为ET)=10000a—lOOOOEf—50000,
由£~3(1。4,10-3)知,庭=10000x10-3,
4
Er)=10%一i()4居_5x10
=10%-104x104x10-3-5x104.
助>0=104a-104X10-5X104^0
0Q—10—5>0
=Q>15(元).
故每位投保人应交纳的最低保费为15元.
跟踪训练[3.1(2023.北京丰台.高三统考期末)某市医疗保险实行定点医疗制度,按照“就近就医、方便管
理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机
构,若甲、乙、丙、丁4名参加保险人员所在地区附近有三家社区医院,并且他们的选择是等可能
的、相互独立的
(1)求甲、乙两人都选择A社区医院的概率;
(2)求甲、乙两人不选择同一家社区医院的概率;
(3)设4名参加保险人员中选择A社区医院的人数为&求£的分布列和数学期望.
【解析】(1)V甲、乙分别选择4社区医院的概率均为皆,
甲、乙两人都选择A社区的概率p=!x!=J.
ooy
(2”.•甲、乙两人选择同一家社区医院的概率为=春,
OOO
甲、乙两人不选择同一家社区医院的概率「=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建行外汇借款合同书范例
- 心房纤颤抗凝治疗
- 金属材料采购合同范本
- 《基础电路》课件
- 20“精彩极了”和“糟糕透了”公开课一等奖创新教学设计
- 绩效管理实务
- 第四单元三《参与家乡文化建设》公开课一等奖创新教学设计统编版高中语文必修上册
- 我多想去看看公开课一等奖创新教学设计及反思
- 肿瘤免疫治疗项目
- 年产xxx木业机械项目可行性研究报告(项目规划)
- 小学二年级心理快乐好心情课件
- 社会秩序的维护主要靠法律还是靠道德辩论赛
- 建筑大师林徽因智慧树知到课后章节答案2023年下潍坊工程职业学院
- 装修施工图设计说明
- 小学校本课程-【海洋教育】海上森林教学课件设计
- 压力容器安全技术监察规程
- 法律文书字体格式
- 临床药理学(完整课件)
- 2021铸造安全生产规范
- 一河一策-一河一档-方案编制思路与方法-课件
- 泡利不相容原理
评论
0/150
提交评论