浙江省宁波市镇海中学2024-2025学年高二上学期期中考试数学试题_第1页
浙江省宁波市镇海中学2024-2025学年高二上学期期中考试数学试题_第2页
浙江省宁波市镇海中学2024-2025学年高二上学期期中考试数学试题_第3页
浙江省宁波市镇海中学2024-2025学年高二上学期期中考试数学试题_第4页
浙江省宁波市镇海中学2024-2025学年高二上学期期中考试数学试题_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

镇海中学2024学年第一学期期中考试高二数学试题卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.1.在等差数列中,已知,,则等于()A.11 B.13 C.15 D.162.若椭圆的右焦点与抛物线的焦点重合,则的值为()A.1 B.3 C.4 D.53.若点到直线和它到点的距离相等,则点的轨迹方程为()A. B. C. D.4.任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环图.这就是数学史上著名的“冰雹猜想”(又称“角谷猜想”等).已知数列满足:,,则()A.4720 B.4722 C.4723 D.47255.已知函数是奇函数,函数是偶函数,且当时,,,则时,以下说法正确的是()A. B.C. D.6.若函数在上单调递增,则的取值范围为()A. B. C. D.7.已知,,,则()A. B. C. D.8.已知椭圆:,左焦点为,在椭圆上取三个不同点,,,且,则的最小值为()A. B. C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分.9.下列选项正确的是()A., B.,C., D.,10.已知抛物线:,为共焦点,直线与抛物线交于,两点,则下列说法正确的是()A.若点为抛物线上的一点,点坐标为,则的最小值为3B.若直线过焦点,则以为直径的圆与相切C.若直线过焦点,当时,则D.设直线的中点坐标为,则该直线的斜率与无关,与有关11.数列满足,,,则下列结论中一定正确的是()A. B. C. D.三、填空题:本题共3小题,每小题5分,共15分.12.已知,,则______.13.已知双曲线与直线相交于A,B两点,其中AB中点的横坐标为,则该双曲线的离心率为______.14.已知函数,若在上恒成立,则实数的取值范围为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数.(1)求的最小值;(2)求在点处的切线方程.16.设等比数列的前项和为,且,.(1)求数列的通项公式.(2)求数列的前项和.17.已知双曲线:(1)求双曲线的渐近线方程;(2)已知点,,直线与双曲线交于,两点,,,求的值.18.已知函数,,其中在.(1)求的值;(2)求函数的单调区间;(3)若恒成立,求实数的取值范围.19.在必修一中,我们曾经学习过用二分法来求方程的近似解,而牛顿(IssacNewton,1643-1727)在《流数法》一书中给出了“牛顿切线法”求方程的近似解.具体步骤如下:设是函数的一个零点,任意选取作为的初始近似值,曲线在点处的切线为,设与轴交点的横坐标为,并称为的1次近似值;曲线在点处的切线为,设与轴交点的横坐标为,称为的2次近似值.一般地,曲线在点处的切线为,记与轴交点的横坐标为,并称为的次近似值.不断重复以上操作,在一定精确度下,就可取为方程的近似解.现在用这种方法求函数的大于零的零点的近似值,取.(1)求和;(2)求和的关系并证明;(3)证明:.镇海中学2024学年第一学期期中考试高二数学试题卷标准答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A2.B3.D4.C5.B6.D7.A8.B二、选择题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,有选错的得0分,部分选对的得部分.9.ABC10.BCD11.AD三、填空题:本题共3小题,每小题5分,共15分.12.13.14.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(1),在单调递减,单调递增,的最小值为(2)16.(1)(2)17.(1)(2):,,,可得设点,,,18.(1)由题意可知,的定义域是,因为在处取得极值,所以,即,解得.当时,,单调递增;当时,,单调递减;所以在处取得极值.(2)此时,恒成立,当时,;当时,;所以的单调递增区间是,单调递减区间是.(3)在上恒成立,设,,,令,则,由,故恒成立,故在上单调递增,又,,故存

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论