版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省东莞市北京师范大学石竹附属中学2025届高三第一次调研测试数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,矩形ABCD中,,,E是AD的中点,将沿BE折起至,记二面角的平面角为,直线与平面BCDE所成的角为,与BC所成的角为,有如下两个命题:①对满足题意的任意的的位置,;②对满足题意的任意的的位置,,则()A.命题①和命题②都成立 B.命题①和命题②都不成立C.命题①成立,命题②不成立 D.命题①不成立,命题②成立2.若直线经过抛物线的焦点,则()A. B. C.2 D.3.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为()A. B. C.或- D.和-4.函数f(x)=2x-3A.[32C.[325.已知集合,则元素个数为()A.1 B.2 C.3 D.46.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为A.48 B.72 C.90 D.967.已知实数满足约束条件,则的最小值是A. B. C.1 D.48.集合中含有的元素个数为()A.4 B.6 C.8 D.129.已知数列是公比为的正项等比数列,若、满足,则的最小值为()A. B. C. D.10.已知角的终边与单位圆交于点,则等于()A. B. C. D.11.秦九韶是我国南宁时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入、的值分别为、,则输出的值为()A. B. C. D.12.《九章算术》中记载,堑堵是底面为直角三角形的直三棱柱,阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵中,,,当阳马体积的最大值为时,堑堵的外接球的体积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列递增的等比数列,若,,则______.14.在长方体中,,则异面直线与所成角的余弦值为()A. B. C. D.15.将含有甲、乙、丙的6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一个组的概率为__________.16.在中,,,,则________,的面积为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面为矩形,侧面底面,为棱的中点,为棱上任意一点,且不与点、点重合..(1)求证:平面平面;(2)是否存在点使得平面与平面所成的角的余弦值为?若存在,求出点的位置;若不存在,请说明理由.18.(12分)设数列的前列项和为,已知.(1)求数列的通项公式;(2)求证:.19.(12分)设椭圆:的右焦点为,右顶点为,已知椭圆离心率为,过点且与轴垂直的直线被椭圆截得的线段长为3.(Ⅰ)求椭圆的方程;(Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线斜率的取值范围.20.(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:试销价格(元)产品销量(件)已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲;乙;丙,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数为的概率.21.(12分)为了解本学期学生参加公益劳动的情况,某校从初高中学生中抽取100名学生,收集了他们参加公益劳动时间(单位:小时)的数据,绘制图表的一部分如表.(1)从男生中随机抽取一人,抽到的男生参加公益劳动时间在的概率:(2)从参加公益劳动时间的学生中抽取3人进行面谈,记为抽到高中的人数,求的分布列;(3)当时,高中生和初中生相比,那学段学生平均参加公益劳动时间较长.(直接写出结果)22.(10分)已知函数.(1)若不等式有解,求实数的取值范围;(2)函数的最小值为,若正实数,,满足,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
作出二面角的补角、线面角、线线角的补角,由此判断出两个命题的正确性.【详解】①如图所示,过作平面,垂足为,连接,作,连接.由图可知,,所以,所以①正确.②由于,所以与所成角,所以,所以②正确.综上所述,①②都正确.故选:A【点睛】本题考查了折叠问题、空间角、数形结合方法,考查了推理能力与计算能力,属于中档题.2、B【解析】
计算抛物线的交点为,代入计算得到答案.【详解】可化为,焦点坐标为,故.故选:.【点睛】本题考查了抛物线的焦点,属于简单题.3、C【解析】
直线过定点,直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),可以发现∠QOx的大小,求得结果.【详解】如图,直线过定点(0,1),∵∠POQ=120°∴∠OPQ=30°,⇒∠1=120°,∠2=60°,∴由对称性可知k=±.故选C.【点睛】本题考查过定点的直线系问题,以及直线和圆的位置关系,是基础题.4、A【解析】
根据幂函数的定义域与分母不为零列不等式组求解即可.【详解】因为函数y=2x-3解得x≥32且∴函数f(x)=2x-3+1【点睛】定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3)若已知函数fx的定义域为a,b,则函数fgx5、B【解析】
作出两集合所表示的点的图象,可得选项.【详解】由题意得,集合A表示以原点为圆心,以2为半径的圆,集合B表示函数的图象上的点,作出两集合所表示的点的示意图如下图所示,得出两个图象有两个交点:点A和点B,所以两个集合有两个公共元素,所以元素个数为2,故选:B.【点睛】本题考查集合的交集运算,关键在于作出集合所表示的点的图象,再运用数形结合的思想,属于基础题.6、D【解析】因甲不参加生物竞赛,则安排甲参加另外3场比赛或甲学生不参加任何比赛①当甲参加另外3场比赛时,共有•=72种选择方案;②当甲学生不参加任何比赛时,共有=24种选择方案.综上所述,所有参赛方案有72+24=96种故答案为:96点睛:本题以选择学生参加比赛为载体,考查了分类计数原理、排列数与组合数公式等知识,属于基础题.7、B【解析】
作出该不等式组表示的平面区域,如下图中阴影部分所示,设,则,易知当直线经过点时,z取得最小值,由,解得,所以,所以,故选B.8、B【解析】解:因为集合中的元素表示的是被12整除的正整数,那么可得为1,2,3,4,6,,12故选B9、B【解析】
利用等比数列的通项公式和指数幂的运算法则、指数函数的单调性求得再根据此范围求的最小值.【详解】数列是公比为的正项等比数列,、满足,由等比数列的通项公式得,即,,可得,且、都是正整数,求的最小值即求在,且、都是正整数范围下求最小值和的最小值,讨论、取值.当且时,的最小值为.故选:B.【点睛】本题考查等比数列的通项公式和指数幂的运算法则、指数函数性质等基础知识,考查数学运算求解能力和分类讨论思想,是中等题.10、B【解析】
先由三角函数的定义求出,再由二倍角公式可求.【详解】解:角的终边与单位圆交于点,,故选:B【点睛】考查三角函数的定义和二倍角公式,是基础题.11、B【解析】
列出循环的每一步,由此可得出输出的值.【详解】由题意可得:输入,,,;第一次循环,,,,继续循环;第二次循环,,,,继续循环;第三次循环,,,,跳出循环;输出.故选:B.【点睛】本题考查根据算法框图计算输出值,一般要列举出算法的每一步,考查计算能力,属于基础题.12、B【解析】
利用均值不等式可得,即可求得,进而求得外接球的半径,即可求解.【详解】由题意易得平面,所以,当且仅当时等号成立,又阳马体积的最大值为,所以,所以堑堵的外接球的半径,所以外接球的体积,故选:B【点睛】本题以中国传统文化为背景,考查四棱锥的体积、直三棱柱的外接球的体积、基本不等式的应用,体现了数学运算、直观想象等核心素养.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
,建立方程组,且,求出,进而求出的公比,即可求出结论.【详解】数列递增的等比数列,,,解得,所以的公比为,.
故答案为:.【点睛】本题考查等比数列的性质、通项公式,属于基础题.14、C【解析】
根据确定是异面直线与所成的角,利用余弦定理计算得到答案.【详解】由题意可得.因为,所以是异面直线与所成的角,记为,故.故选:.【点睛】本题考查了异面直线夹角,意在考查学生的空间想象能力和计算能力.15、【解析】
先求出总的基本事件数,再求出甲、乙至少一人参加指挥交通且甲、丙不在同一组的基本事件数,然后根据古典概型求解.【详解】6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料的基本事件总数共有个,甲、乙至少一人参加指挥交通且甲、丙不在同一组的基本事件个数有:个,所以甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率为.故答案为:【点睛】本题主要考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是中档题.16、【解析】
利用余弦定理可求得的值,进而可得出的值,最后利用三角形的面积公式可得出的面积.【详解】由余弦定理得,则,因此,的面积为.故答案为:;.【点睛】本题考查利用余弦定理解三角形,同时也考查了三角形面积的计算,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)存在,为中点【解析】
(1)证明面,即证明平面平面;(2)以为坐标原点,为轴正方向,为轴正方向,为轴正方向,建立空间直角坐标系.利用向量方法得,解得,所以为中点.【详解】(1)由于为中点,.又,故,所以为直角三角形且,即.又因为面,面面,面面,故面,又面,所以面面.(2)由(1)知面,又四边形为矩形,则两两垂直.以为坐标原点,为轴正方向,为轴正方向,为轴正方向,建立空间直角坐标系.则,设,则,设平面的法向量为,则有,令,则,则平面的一个法向量为,同理可得平面的一个法向量为,设平面与平面所成角为,则由题意可得,解得,所以点为中点.【点睛】本题主要考查空间几何位置关系的证明,考查空间二面角的应用,意在考查学生对这些知识的理解掌握水平.18、(1)(2)证明见解析【解析】
(1)由已知可得,构造等比数列即可求出通项公式;(2)当时,由,可求,时,由,可证,验证时,不等式也成立,即可得证.【详解】(1)由可得,,即,所以,解得,(2)当时,,,当时,,综上,由可得递增,,时;所以,综上:故.【点睛】本题主要考查了递推数列求通项公式,利用放缩法证明不等式,涉及等比数列的求和公式,属于难题.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由题意可得,,,解得即可求出椭圆的C的方程;(Ⅱ)由已知设直线l的方程为y=k(x-2),(k≠0),联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得B的坐标,再写出MH所在直线方程,求出H的坐标,由BF⊥HF,解得.由方程组消去y,解得,由,得到,转化为关于k的不等式,求得k的范围.【详解】(Ⅰ)因为过焦点且垂直于长轴的直线被椭圆截得的线段长为3,所以,因为椭圆离心率为,所以,又,解得,,,所以椭圆的方程为;(Ⅱ)设直线的斜率为,则,设,由得,解得,或,由题意得,从而,由(Ⅰ)知,,设,所以,,因为,所以,所以,解得,所以直线的方程为,设,由消去,解得,在中,,即,所以,即,解得,或.所以直线的斜率的取值范围为.【点睛】本题考查在直线与椭圆的位置关系中由已知条件求直线的斜率取值范围问题,还考查了由离心率求椭圆的标准方程,属于难题.20、(1)乙同学正确;(2).【解析】
(1)根据变量且有线性负相关关系判断甲不正确.根据回归直线方程过样本中心点,判断出乙正确.(2)由线性回归方程得到的估计数据,计算出误差,求得“理想数据”的个数,由此利用古典概型概率计算公式,求得所求概率.【详解】(1)已知变量具有线性负相关关系,故甲不正确,,代入两个回归方程,验证乙同学正确,故回归方程为:(2)由(1)得到的回归方程,计算估计数据如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 次性购买2024年度外籍人士房产合同2篇
- 2024年度钢筋班组劳务分包成本预算合同
- 二零二四年健身房场地租赁及运营合同2篇
- 竹里馆课件教学课件
- 煤矿开采承包合同
- 青贮采购合同
- 生产车间员工培训方案设计
- 中学生食品安全课件
- 餐厅员工基础培训方案设计
- 活动中心相关问题汇报
- 机械类复试面试问题汇总(200多道题)
- 2023年北京中医药大学辅导员招聘考试笔试题库及答案解析
- 新中国十大元帅!课件
- (完整版)出入登记表
- 地籍技术设计书
- 国家开放大学《可编程控制器应用实训》形考任务4(实训四)
- 投标人企业组织结构框图41730
- 挂牌上锁考试题
- OpenStack云计算平台实战课件(完整版)
- 插补型直线度补偿(FANUC系统)
- 保健食品生产企业日常监督检查记录表
评论
0/150
提交评论