山东省牟平一中2025届高三第三次模拟考试数学试卷含解析_第1页
山东省牟平一中2025届高三第三次模拟考试数学试卷含解析_第2页
山东省牟平一中2025届高三第三次模拟考试数学试卷含解析_第3页
山东省牟平一中2025届高三第三次模拟考试数学试卷含解析_第4页
山东省牟平一中2025届高三第三次模拟考试数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省牟平一中2025届高三第三次模拟考试数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,满足,且的最大值是最小值的4倍,则的值是()A.4 B. C. D.2.已知复数满足,则的值为()A. B. C. D.23.若复数(为虚数单位),则()A. B. C. D.4.设命题p:>1,n2>2n,则p为()A. B.C. D.5.已知的共轭复数是,且(为虚数单位),则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有()A.12种 B.18种 C.24种 D.64种7.已知向量,,则向量与的夹角为()A. B. C. D.8.已知数列中,,(),则等于()A. B. C. D.29.ΔABC中,如果lgcosA=lgsinA.等边三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形10.已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的()A. B. C. D.11.已知直线与圆有公共点,则的最大值为()A.4 B. C. D.12.已知是定义在上的奇函数,且当时,.若,则的解集是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的下顶点为,若直线与椭圆交于不同的两点、,则当_____时,外心的横坐标最大.14.已知随机变量服从正态分布,若,则_________.15.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入袋或袋中.己知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是,则小球落入袋中的概率为__________.16.已知函数,且,,使得,则实数m的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了解网络外卖的发展情况,某调查机构从全国各城市中抽取了100个相同等级地城市,分别调查了甲乙两家网络外卖平台(以下简称外卖甲、外卖乙)在今年3月的订单情况,得到外卖甲该月订单的频率分布直方图,外卖乙该月订单的频数分布表,如下图表所示.订单:(单位:万件)频数1223订单:(单位:万件)频数402020102(1)现规定,月订单不低于13万件的城市为“业绩突出城市”,填写下面的列联表,并根据列联表判断是否有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.业绩突出城市业绩不突出城市总计外卖甲外卖乙总计(2)由频率分布直方图可以认为,外卖甲今年3月在全国各城市的订单数(单位:万件)近似地服从正态分布,其中近似为样本平均数(同一组数据用该区间的中点值作代表),的值已求出,约为3.64,现把频率视为概率,解决下列问题:①从全国各城市中随机抽取6个城市,记为外卖甲在今年3月订单数位于区间的城市个数,求的数学期望;②外卖甲决定在今年3月订单数低于7万件的城市开展“订外卖,抢红包”的营销活动来提升业绩,据统计,开展此活动后城市每月外卖订单数将提高到平均每月9万件的水平,现从全国各月订单数不超过7万件的城市中采用分层抽样的方法选出100个城市不开展营销活动,若每按一件外卖订单平均可获纯利润5元,但每件外卖平均需送出红包2元,则外卖甲在这100个城市中开展营销活动将比不开展营销活动每月多盈利多少万元?附:①参考公式:,其中.参考数据:0.150.100.050.0250.0100.0012.7022.7063.8415.0246.63510.828②若,则,.18.(12分)设不等式的解集为M,.(1)证明:;(2)比较与的大小,并说明理由.19.(12分)已知椭圆的短轴长为,左右焦点分别为,,点是椭圆上位于第一象限的任一点,且当时,.(1)求椭圆的标准方程;(2)若椭圆上点与点关于原点对称,过点作垂直于轴,垂足为,连接并延长交于另一点,交轴于点.(ⅰ)求面积最大值;(ⅱ)证明:直线与斜率之积为定值.20.(12分)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A的大小.21.(12分)在数列中,,(1)求数列的通项公式;(2)若存在,使得成立,求实数的最小值22.(10分)设数阵,其中、、、.设,其中,且.定义变换为“对于数阵的每一行,若其中有或,则将这一行中每个数都乘以;若其中没有且没有,则这一行中所有数均保持不变”(、、、).表示“将经过变换得到,再将经过变换得到、,以此类推,最后将经过变换得到”,记数阵中四个数的和为.(1)若,写出经过变换后得到的数阵;(2)若,,求的值;(3)对任意确定的一个数阵,证明:的所有可能取值的和不超过.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】试题分析:先画出可行域如图:由,得,由,得,当直线过点时,目标函数取得最大值,最大值为3;当直线过点时,目标函数取得最小值,最小值为3a;由条件得,所以,故选D.考点:线性规划.2、C【解析】

由复数的除法运算整理已知求得复数z,进而求得其模.【详解】因为,所以故选:C【点睛】本题考查复数的除法运算与求复数的模,属于基础题.3、B【解析】

根据复数的除法法则计算,由共轭复数的概念写出.【详解】,,故选:B【点睛】本题主要考查了复数的除法计算,共轭复数的概念,属于容易题.4、C【解析】根据命题的否定,可以写出:,所以选C.5、D【解析】

设,整理得到方程组,解方程组即可解决问题.【详解】设,因为,所以,所以,解得:,所以复数在复平面内对应的点为,此点位于第四象限.故选D【点睛】本题主要考查了复数相等、复数表示的点知识,考查了方程思想,属于基础题.6、C【解析】

根据题意,分2步进行分析:①,将4人分成3组,②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,将剩下的2组全排列,安排其他的2项工作,由分步计数原理计算可得答案.【详解】解:根据题意,分2步进行分析:①,将4人分成3组,有种分法;②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,有2种情况,将剩下的2组全排列,安排其他的2项工作,有种情况,此时有种情况,则有种不同的安排方法;故选:C.【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.7、C【解析】

求出,进而可求,即能求出向量夹角.【详解】解:由题意知,.则所以,则向量与的夹角为.故选:C.【点睛】本题考查了向量的坐标运算,考查了数量积的坐标表示.求向量夹角时,通常代入公式进行计算.8、A【解析】

分别代值计算可得,观察可得数列是以3为周期的周期数列,问题得以解决.【详解】解:∵,(),

…,

∴数列是以3为周期的周期数列,

故选:A.【点睛】本题考查数列的周期性和运用:求数列中的项,考查运算能力,属于基础题.9、B【解析】

化简得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,结合0<A<π,可求A=π【详解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故选:B【点睛】本题主要考查了对数的运算性质的应用,两角差的正弦公式的应用,解题的关键是灵活利用基本公式,属于基础题.10、C【解析】试题分析:通过对以下四个四棱锥的三视图对照可知,只有选项C是符合要求的.考点:三视图11、C【解析】

根据表示圆和直线与圆有公共点,得到,再利用二次函数的性质求解.【详解】因为表示圆,所以,解得,因为直线与圆有公共点,所以圆心到直线的距离,即,解得,此时,因为,在递增,所以的最大值.故选:C【点睛】本题主要考查圆的方程,直线与圆的位置关系以及二次函数的性质,还考查了运算求解的能力,属于中档题.12、B【解析】

利用函数奇偶性可求得在时的解析式和,进而构造出不等式求得结果.【详解】为定义在上的奇函数,.当时,,,为奇函数,,由得:或;综上所述:若,则的解集为.故选:.【点睛】本题考查函数奇偶性的应用,涉及到利用函数奇偶性求解对称区间的解析式;易错点是忽略奇函数在处有意义时,的情况.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由已知可得、的坐标,求得的垂直平分线方程,联立已知直线方程与椭圆方程,求得的垂直平分线方程,两垂直平分线方程联立求得外心的横坐标,再由导数求最值.【详解】如图,由已知条件可知,不妨设,则外心在的垂直平分线上,即在直线,也就是在直线上,联立,得或,的中点坐标为,则的垂直平分线方程为,把代入上式,得,令,则,由,得(舍)或.当时,,当时,.当时,函数取极大值,亦为最大值.故答案为:.【点睛】本题考查直线与椭圆位置关系的应用,训练了利用导数求最值,是中等题.14、0.4【解析】

因为随机变量ζ服从正态分布,利用正态曲线的对称性,即得解.【详解】因为随机变量ζ服从正态分布所以正态曲线关于对称,所.【点睛】本题考查了正态分布曲线的对称性在求概率中的应用,考查了学生概念理解,数形结合,数学运算的能力,属于基础题.15、【解析】记小球落入袋中的概率,则,又小球每次遇到黑色障碍物时一直向左或者一直向右下落,小球将落入袋,所以有,则.故本题应填.16、【解析】

根据条件转化为函数在上的值域是函数在上的值域的子集;分别求值域即可得到结论.【详解】解:依题意,,即函数在上的值域是函数在上的值域的子集.因为在上的值域为()或(),在上的值域为,故或,解得故答案为:.【点睛】本题考查了分段函数的值域求参数的取值范围,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析,有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.(2)①4.911②100万元.【解析】

(1)根据频率分布直方图与频率分布表,易得两个外卖平台中月订单不低于13万件的城市数量,即可完善列联表.通过计算的观测值,即可结合临界值作出判断.(2)①先根据所给数据求得样本平均值,根据所给今年3月订单数区间,并由及求得,.结合正态分布曲线性质可求得,再由二项分布的数学期望求法求解.②订单数低于7万件的城市有和两组,根据分层抽样的性质可确定各组抽取样本数.分别计算出开展营销活动与不开展营销活动的利润,比较即可得解.【详解】(1)对于外卖甲:月订单不低于13万件的城市数量为,对于外卖乙:月订单不低于13万件的城市数量为.由以上数据完善列联表如下图,业绩突出城市业绩不突出城市总计外卖甲4060100外卖乙5248100总计92108200且的观测值为,∴有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.(2)①样本平均数,故==,,的数学期望,②由分层抽样知,则100个城市中每月订单数在区间内的有(个),每月订单数在区间内的有(个),若不开展营销活动,则一个月的利润为(万元),若开展营销活动,则一个月的利润为(万元),这100个城市中开展营销活动比不开展每月多盈利100万元.【点睛】本题考查了频率分布直方图与频率分布表的应用,完善列联表并计算的观测值作出判断,分层抽样的简单应用,综合性强,属于中档题.18、(1)证明见解析;(2).【解析】试题分析:(1)首先求得集合M,然后结合绝对值不等式的性质即可证得题中的结论;(2)利用平方做差的方法可证得|1-4ab|>2|a-b|.试题解析:(Ⅰ)证明:记f(x)=|x-1|-|x+2|,则f(x)=,所以解得-<x<,故M=(-,).所以,||≤|a|+|b|<×+×=.(Ⅱ)由(Ⅰ)得0≤a2<,0≤b2<.|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b2)=4(a2-1)(b2-1)>0.所以,|1-4ab|>2|a-b|.19、(1);(2)(ⅰ);(ⅱ)证明见解析.【解析】

(1)由,解方程组即可得到答案;(2)(ⅰ)设,,则,,易得,注意到,利用基本不等式得到的最大值即可得到答案;(ⅱ)设直线斜率为,直线方程为,联立椭圆方程得到的坐标,再利用两点的斜率公式计算即可.【详解】(1)设,由,得.将代入,得,即,由,解得,所以椭圆的标准方程为.(2)设,,则,(ⅰ)易知为的中位线,所以,所以,又满足,所以,得,故,当且仅当,即,时取等号,所以面积最大值为.(ⅱ)记直线斜率为,则直线斜率为,所以直线方程为.由,得,由韦达定理得,所以,代入直线方程,得,于是,直线斜率,所以直线与斜率之积为定值.【点睛】本题考查直线与椭圆的位置关系,涉及到椭圆中的最值及定值问题,在解椭圆与直线的位置关系的答题时,一般会用到根与系数的关系,考查学生的数学运算求解能力,是一道有一定难度的题.20、(1)见详解;(2).【解析】

(1)因为折纸和粘合不改变矩形,和菱形内部的夹角,所以,依然成立,又因和粘在一起,所以得证.因为是平面垂线,所以易证.(2)在图中找到对应的平面角,再求此平面角即可.于是考虑关于的垂线,发现此垂足与的连线也垂直于.按照此思路即证.【详解】(1)证:,,又因为和粘在一起.,A,C,G,D四点共面.又.平面BCGE,平面ABC,平面ABC平面BCGE,得证.(2)过B作延长线于H,连结AH,因为AB平面BCGE,所以而又,故平面,所以.又因为所以是二面角的平面角,而在中,又因为故,所以.而在中,,即二面角的度数为.【点睛】很新颖的立体几何考题.首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的.再者粘合后的多面体不是直棱柱,建系的向量解法在本题中略显麻烦,突出考查几何方法.最后将求二面角转化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论