




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
BuildingTechnologies&UrbanSystemsDivisionEnergyTechnologiesArea
LawrenceBerkeleyNationalLaboratory
EvaluatingNet-ZeroEmissionPathwaysforChina’sCementIndustry
HongyouLu1,NanZhou1,HonLeungCurtisWong1,XianZhang2
1LawrenceBerkeleyNationalLaboratory,2TheAdministrativeCenterforChina’sAgenda21
EnergyTechnologiesAreaJune6,2024
/10.20357/B75W27
ThisworkwassupportedbytheAssistantSecretaryforEnergyEfficiencyandRenewableEnergy,
BuildingTechnologiesOffice,oftheUSDepartmentofEnergy
underContractNo.DE-AC02-05CH11231.
Disclaimer:
ThisdocumentwaspreparedasanaccountofworksponsoredbytheUnitedStatesGovernment.Whilethisdocumentisbelievedtocontaincorrectinformation,neithertheUnitedStatesGovernmentnoranyagencythereof,northeRegentsoftheUniversityofCalifornia,noranyoftheiremployees,makesanywarranty,expressorimplied,orassumesanylegalresponsibilityfortheaccuracy,completeness,orusefulnessofanyinformation,apparatus,product,orprocessdisclosed,orrepresentsthatitsusewouldnotinfringeprivatelyownedrights.Referencehereintoanyspecificcommercialproduct,process,orservicebyitstradename,trademark,manufacturer,orotherwise,doesnotnecessarilyconstituteorimplyitsendorsement,recommendation,orfavoringbytheUnitedStatesGovernmentoranyagencythereof,ortheRegentsoftheUniversityofCalifornia.TheviewsandopinionsofauthorsexpressedhereindonotnecessarilystateorreflectthoseoftheUnitedStatesGovernmentoranyagencythereofortheRegentsoftheUniversityofCalifornia.
1
No.9-037-24+HongyouLu
EvaluatingNet-ZeroEmissionPathwaysfor
China’sCementIndustry
HongyouLu
LawrenceBerkeleyNationalLaboratory
1CyclotronRoadMailstop90R2121,Berkeley,CA94720
Email:
hylu@
HonLeungCurtisWong
LawrenceBerkeleyNationalLaboratory
1CyclotronRoadMailstop90R2121,Berkeley,CA94720
Email:
curtis_wong@
NanZhou
LawrenceBerkeleyNationalLaboratory
1CyclotronRoadMailstop90R2121,Berkeley,CA94720
Email:
NZhou@
XianZhang
TheAdministrativeCenterforChina’sAgenda218YuyuantanSouthRoad,HaidianDistrict,Beijing,China
Email:
zhangxian@
Abstract
China’scementindustryemitsover1Gtofcarbondioxide(CO2)annually,or3%ofglobalCO2emissions.
UrgentdecarbonizationeffortsoftheChinesecementindustryareneededtomeetChinaandglobalcommunity’sclimatecommitments.Priorstudiesonthistopicprimarilyreliedonsupply-sidetechnologiesandend-of-pipe
solutions,presentingonesingularpathwaytonetzerowithoutexploringmultipletrajectories.
Thisstudyaddsvaluetotheexistingresearchbyconstructingandevaluatingtwodifferentpathwaystowardnet-zeroemissionsinChina’scementindustry:theEnergyTechnologyPathway(ETP)andtheCircularEconomy
Pathway(CEP).Bothpathwaysaimfornet-zeroemissionsbutdivergeintheirprioritizationandemphasis.TheEnergyTechnologyPathwayfocusedonsupply-sidetechnologiessuchasgreenhydrogenandCCS,whiletheCircularEconomyPathwayfocusedondemand-sidestrategies,centeredonmaterialsandresources.
Thestudyshowedbothpathwayscanachieveacomparablelevelofemissionreduction,reducing94-95%ofCO2emissionsby2060fromthe2020level.Notably,theroleofCCSislimitedintheCEP,contributingonly5%and22%oftotalemissionreductionsby2030and2060,respectively.Themajorityoftheemission
reductionsinCEPareachievedthroughacombinationofmaterial-focusedinnovationsandcirculareconomy
strategies,suchasincreasingtheuseofsupplementalcementitiousmaterials(SCMs),advancingalternative
cements,integratingmaterialefficiencypracticesinproductlifecyclephases,andadoptingalternativefuels(e.g.,industrialwastesandagriculturalbyproducts).Policysupportonmaterialsandthecirculareconomywillbe
critical.Werecommendupdatingcodesandstandardstoallowperformance-basedcementproducts,providingR&Dsupportonalternativecements,developingimplementationguidestodisseminatematerialefficiency
practices,andimprovingmaterial/wastecollection,sorting,andrecyclingsystems.
Introduction
Cementandcementproductsarefoundationalmaterialsforsociety.Theyareusedextensivelyinresidentialandcommercialbuildings,industrialfacilities,highwaysandbridges,andothertransportationsystems,powerplants,andinfrastructuresystemstodistributeelectricity,heat,gas,andwater.Globally,thecementindustryisoneof
themostenergyandcarbon-intensivesectors.Itaccountedfor7%ofglobalcarbondioxide(CO2)emissions(GCCA2021),orabout3.5gigatonnes(Gt)ofCO2emissionsperyear.
Chinahasbeentheworld’slargestcement-producingcountryforatleast20years.In2022alone,itproducedatotalof2.1billiontonnesofcement,accountingfor52%ofglobalproduction(USGS2023).CO2emissions
fromtheChinesecementindustryrepresented13%ofChina’stotalCO2emissionsin2020(XinhuaNet2022).ToachieveChina’sclimategoals,i.e.,carbonpeakingbefore2030andcarbonpeakingbefore2060(or“DualCarbon”goals),itisimperativetosignificantlymitigateChina’scementindustryemissions.
MostofthecurrentresearchondecarbonizingChina’scementindustryfocusedonsupply-sidetechnologiesand/orend-of-pipesolutions,whicharecomplexengineeringsystemsandcapitalintenvise.Priorresearch
2
showedthattechnologiessuchasfuelswitchingandcarboncapture,utilization,andstorage(CCUS)willplaysignificantrolesinachievingnear-zeroemissionsinChina(Heetal.2023;RMIandChinaCementAssociation2022;Li2021).Often,previousstudiespresentonlyonepathwayasthemostplausiblepathwaytonet-zero
emissions,withoutexploringmultiplepathwaystodeepmitigation.
ThisanalysisaddsvaluetotheexistingliteratureandstudiesonChina’scementindustrydecarbonization.Wedevelopedthreescenariosandcomparedtwopotentialnear-zeropathways–anEnergyTechnologyPathway(ETP),andaCircularEconomyPathway(CEP).Bothpathwayshavethepotentialtoreducethecement
industry'sCO2emissionstonearzero.However,thepathwaysdifferintheirprioritizationandemphasisondecarbonizationstrategies,withtheETPfocusedonsupply-sidetechnologiessuchasgreenhydrogenandCCUS,andtheCEPfocusedondemand-sideandcirculareconomystrategiessuchasmaterialefficiency
strategies,clinkersubstitution,andalternativecements.
First,weprovidedanoverviewofthecurrentstatusoftheChinesecementindustry.Then,webriefly
summarizedthemodelingapproach,includingthemodelingframework,scenariodesigns,andkey
characteristicsofeachofthescenarios.TheResultsSectionpresentedthemainfindingsofthisanalysis,
highlightingtheenergyandemissionimplicationsandcontributionsfromeachofthedecarbonizationstrategies.
WediscussedthepolicyimplicationsforChinaandotheremergingeconomies.Thepurposeofthispaperistodevelopabottom-updecarbonizationroadmapforChina’scementindustry.Inaddition,someofthepolicy
findingsmaybealsobeneficialforotheremergingeconomies,whichareexpectedtohavehighercementdemandwhilemeetingtheirclimatechangegoals.
CementIndustryinChina
ThecementindustryplaysanimportantroleinsupportingChina’seconomicgrowthandurbanization.WiththedevelopmentofChina’seconomyandurbanization.,China’scementproductionincreasedfrom232million
tonnes(Mt)in1990tomorethan2,100Mtin2022,growing7.2%peryearonaverage.By2022,China’s
cementproductionrepresented52%ofthetotalproductionintheworld.AsshowninFigure1,cement
productioninChinaseemedtohavepeakedin2014andthenbegantograduallydeclineataround2%peryearonaveragefrom2014to2022(NBS2023).China’scementindustryhaspledgedtoachievecarbonpeaking
before2023,aheadofChina’snationalclimategoal(CBMF2022;ChinaGovernmentWebsite2022).MostoftheexpertsweinterviewedagreethatreachingcarbonpeakingisnotachallengeforChina’scementindustry,giventhatbothclinkerandcementproductionseemtohavealreadypeaked,andfurtherdemandreductionis
expected.
Figure1.China’scementproductionintheworld(1990-2022)
Sources:USGS2023;NBS2023.
China’scementproductionandconsumptionarestronglylinkedtoreal-estateindustrydevelopmentandfixed-assetsinvestment.Onaverage,about40%ofcementisusedtodevelopurbanbuildingswhileanother35%isusedforinfrastructuresystems,suchasenergysupplysystems,railways,roads,pavements,andhighways
(Figure2top).Theremaining25%ofcementisusedinruralhousingandinfrastructure.Overtheyearsof
urbanizationandeconomicdevelopment,theconstructiontypeofChineseruralhousinghasbeenshiftingfromtraditionalbrickandmortarwallstopouredconcretewalls.Inaddition,about60%ofthecementproducedin
3
Chinaisusedtomakeconcreteproducts.Mortarproductionandbrickproductioneachaccountedforanother20%ofcementconsumption(Figure2bottom).
Figure2.Cementconsumptionbymarketsegments(left)andproduct(right)inChina
Source:personalcommunicationwiththeexpertsfromtheChinaCementAssociation.
ThecementindustryisthesecondlargestCO2-emittingindustryinChina,aftertheironandsteelindustry.By
2020,thecementindustrycontributedto13.5%ofChina’stotalCO2emissions(XinhuaNet2022).Theprocess-relatedCO2emissions,i.e.,calcinationoflimestone,represented60%oftotalemissions.Onsitefuelcombustion
forcementproductionaccountedforabout35%oftotalCO2emissionsinthecementindustry.Emissionsassociatedwithpurchasedelectricity(Scope2emissions)representedabout5%oftotalCO2emissionsinChina’scementindustry(Heetal.2023).
Bytheendof2022,Chinahad1,572rotarykilnproductionlineswithadesignedtotalclinkerproduction
capacityof1.84billiontonnesperyear.Theactualclinkerproductioncapacityisestimatedtobemorethan2
billiontonnesperyear(DigitalCement2023a).Inthepast10to15years,theChinesegovernmentimplementedpoliciessuchas“replacingsmall,inefficientwithlarger,efficientcapacities”(Zhouetal.2022;XinhuaNet
2018).Smallerkilnshavebeenreplacedwithlargerandnewercapacities.By2022,about75%oftheclinker
capacitycamefromkilnswithacapacityof2,500tonnesperday(tpd)orhigher.About69%oftheclinker
capacitywasfromkilnswithacapacityof4,000tpdorhigher(ChinaEnvironmentalImpactAssessment2023).
TheChinesegovernmenthasbeenencouragingindustryconsolidationstophaseoutinefficientcapacitiesand
improveefficiency.By2022,about58%oftheclinkerproductioncapacitybelongtotheTop10largestcementmanufacturersinChina(Table1).AbouthalfoftheTop10cementcompaniesarestate-ownedenterprises
(SOEs),eitheratthecentralorprovinciallevel,andtheseSOEscontrolledalmost50%ofthetotalclinkerproductioncapacityinChina.ItcouldbearguedthattheseSOEshavemoreresponsibilityandpressuretodecarbonizeChina’scementindustryandsupportChina’s“DualCarbon”climategoals.
TopCompanies(2022)Capacity
Table1.10CementinChinabyClinkerProduction
No.
Companies[English]
Companies[Chinese]
2022Clinker
ProductionCapacity
(Mt/year)
Shareof
National
Total
Ownership
1
ChinaNationalBuildingMaterialsGroup
中国建材集团
385
21%
CentralSOE
2
AnhuiConchCement
安徽海螺水泥股份有限公司
221
12%
ProvincialSOE(Anhui)
3
TangshanJidongCement
唐山冀东水泥股份有限公司(含金隅)
109
6%
Provincial
SOE(Beijing)
4
HongshiHoldingsGroup
红狮控股集团有限公司
67
4%
Private
5
ChinaResourcesCement
华润水泥控股有限公司
67
3%
CentralSOE
6
HuaxinCement
华新水泥股份有限公司
63
3%
ForeignwithlocalSOE*
7
ShandongShanshuiCementGroup
山东山水水泥集团有限公司
54
3%
Private
8
TaiwanCement
台湾水泥股份有限公司
43
2%
Foreign
9
TianruiCementGroup
天瑞水泥集团有限公司
34
2%
Private
10
AsiaCement
亚洲水泥(中国)控股公司
22
1%
Foreign
Sources:DigitalCement2023b;Downie2021.
*Foreignwithlocal(HuangshiCity,HubeiProvince)SOEasaminorityshareholder.
CementmanufacturinginChinaisalocalizedproduction.Everyprovince(orprovincial-levelmunicipality)hascementproduction(Figure3).In2022,Guangdongprovinceproducedthemost,at151Mt,or7%ofthenational
4
total;whileBeijingproducedtheleast,at2Mt,or0.1%ofthenationaltotal.CementproductionismoreconcentratedinthesoutheastregionofChina,butalsosignificantinthesouthwestandcentralChina.
Thisleveloflocalization,partlybasedontheabundantavailabilityofrawmaterials(e.g.,limestone)andpartlydrivenbytheneedtoreducetransportationcosts,shouldbeconsideredwhenidentifyingpotentialtechnologies(e.g.,greenhydrogenorrenewables)andstrategiestodecarbonizethecementindustry.Torapidlydecarbonizethecementindustry,standardsandregulationsoncement(andcement-basedproducts)needtothinkbeyond
national-level,“onesizefitsall”requirements,butallowcementproductiontobeadaptivetolocalresourcesofrawmaterialsandenergysources,aswellaslocalspecificapplications.
Figure3.CementproductionbyprovinceinChina(2022)
Sources:NBS2023;thisanalysis.
Duringthe14thFive-YearPlan(2021-2025),theChinesegovernmentalsoestablishedtargetstoimprovethecementindustry'senergyefficiency,increasetheuseofalternativefuels,andlimitclinkerproductioncapacity.Thisincludesanenergyintensityreductionof3.7%by2025fromthe2020levelforclinkerproduction,
increasingtheshareofproductioncapacitytoreachenergy-efficiencybenchmarklevelsto30%by2025,
increasingthepercentageofkilnsthatusealternativefuelstomorethan30%,andlimitclinkercapacitytobenomorethan1.8billiontonnesby2025(Table2).
Table2.EnergyandcarbontargetsforthecementindustryinChina
Categories
Indicators
Targets
CO2mitigation
Carbonpeaking
Before2023
Energyefficiencyimprovement
Energyintensityofclinkerproduction
Reducing3.7%by2025from
2020level
Shareofproductioncapacityreachingtheannounced
benchmarklevelinenergyefficiency(seeTable3below)
30%by2025
Alternativefuels
Shareofkilnsusingalternativefuels
>30%by2025
Limitproductioncapacity
Clinkercapacity
Nomorethan1.8billiontonnesby2025
Source:CBMF2022;LBNLanalysis.
Specifically,theChinesegovernmentrecentlyre-focusedonimprovingindustrialenergyefficiencyand
indicatedthatitplannedtoleveragetheactionsofindustrialenergyefficiencytoadvanceeffortsoncarbonmitigation.TheNationalDevelopmentandReformCommittee(NDRC)ofChinaannouncedguidanceon
Promotingenergyconservationandemissionreductioninkeysectorsbystrictlyusingenergyefficiency
requirementsin2021(NDRC2021a).NDRCpublishedEnergyEfficiencyBenchmarkandStandardLevelsfor
KeyIndustrialSectors(2023version)inJune2023(NDRC2023).Thecementindustryisrequiredtohave30%oftheclinkerproductioncapacityreachtheenergyintensityof100kilogramsofcoalequivalent(kgce)pertonneofclinkerby2025(Table3).
Table3.EnergyintensitybenchmarkandstandardlevelsforclinkerproductioninChina
Keyindustry
BenchmarkLevels
StandardLevels
ReferenceStandard
5
Clinkerproduction
100kgce/tclinker2.93GJ/tclinker
117kgce/tclinker3.42GJ/tclinker
GB16780
Source:NDRC2023.
Toachievethetarget,NDRCrequireslocalgovernmentstodevelopatimelineandannualplanstoeitherretrofitorphaseoutinefficientcapacities.TheChinesegovernmentalsoencouragesthelocalgovernmentstouse
existingpolicytools,suchasloans,greencredits,greenbonds,climatefinance,differentialpricing,supervisionandinspection,andenforcementofenvironmentalprotectionlaws.
However,specificpoliciesonhowtoacceleratethecementindustrytoachievenet-zeroemissionsby2060seemlackinginChina.ChineseexpertsthatweinterviewedforthisstudyexpectthecementindustrytobeincludedinChina’scap-and-tradeprogramsoon.Discussionsonlow-carboncementaswellastheuseofcarboncapture,
utilization,andstorage(CCUS)arealsoongoing.However,urgentpolicyactionsareneededtoexpandbeyondimprovingenergyefficiencyandtacklethedecarbonizationchallengeusingaportfolioofstrategiesfromboththesupply-sideanddemand-sidesolutions.Thus,weconductedthisstudy,developedmultiplepathways
buildingonChina’sexistingtargetsandpolicyguidance,andcomparedtheirdifferencesinreachingnear-zeroby2060.Weespeciallyhighlightedthematerial-level,demand-sidestrategiesthathavenotbeenemphasizedbyexistingpolicies.
ModelingApproach
ModelingFramework
ThisstudyisdevelopedbasedonthemodelingworkoftheChinaEnergyOutlook2022(Zhouetal.2022),
whichusedBerkeleyLab’sChina2050DemandResourcesEnergyAnalysisModel(China2050DREAM)to
developbottom-upscenarioprojectionsofChina’sfutureenergyandemissions.TheChina2050DREAM
followsabottom-upenergyend-useaccountingframeworkofChina’senergyandeconomicstructurebuiltusingStockholmEnvironmentInstitute’sLowEmissionsAnalysisPlatform(LEAP).UsingtheLEAPplatform,the
China2050DREAMframeworkemploysbothmacroeconomicandnon-linear,physicaldriverstomodel
integratedfeedbackwithinandacrossbuildings,industry,transportation,andenergytransformation(primaryenergysupplyincludingelectricity)sectors.
China2050DREAMdiffersfrommostotherintegratedassessmentmodelsinthatusesnon-linear,physicaldriverssuchaspopulation,demographics,andlandareatodrivethefuturegrowthofenergy-consuming
activitiesinbuildings,industry,andtransport.Innotrelyingsolelyoneconomicgrowthtodrivefutureenergy
consumption,theuseoftheseadditionalphysicaldrivershelpscapturepotentialsaturationeffectsinenergy
equipmentownershipandusage,livingspaceandurbaninfrastructure,andfertilizerusethatcancontributeto
theplateauingofenergydemand.Thisuniqueapproachalsocapturesimportantcross-sectorallinkagesthatmaynotbeinothermodels,suchashowslowdownsinnewbuildingandinfrastructureconstructioncanreduce
domesticcement,steel,andglassdemandforconstruction.Lastly,theChina2050DREAMincorporatesdecades
ofdetailedChineseenergy-relatedstatisticsatsectoralandfuel-specificlevelstracingbackto1980andalsocharacterizesthelatestenergy-consumingtechnologiesintermsofenergyefficiencyandfuelmixforvariousend-uses.
Forcalculatingandreportingprimaryenergyconsumption,theChina2050DREAMusesthedirectequivalentapproach(consistentwiththeIntergovernmentalPanelonClimateChange,IPCC)asthedefaultforconvertingprimaryelectricity,ratherthanthepowerplantcoalconsumption(PPCC)methodusedinChinesestatistics
(Lewisetal.2015).Forcalculatingenergy-relatedcarbondioxide(CO2)emissions,China-specificfuelenergyandheatcontentareenteredintothemodelandmultipliedbytheIPCCdefaultCO2emissionsfactorsfor
specificfossilfuels(IPCC2006).ForotherstudiesdevelopedusingChina2050DREAM,pleaseseeLuetal.
2022andKhannaetal.2019.
ScenarioDesign
ToanalyzethedecarbonizationpathwaysinChina’scementindustry,weconstructedthreescenariosandtwoofwhichhavethepotentialtoreachnear-zeroby2060:
•ReferenceScenario:assumesthatChina’scementproductionwillslowdownsignificantlydrivenby
slowingurbanization,decliningpopulation,andaslowerpaceofeconomicdevelopment(Heetal.2023).Itassumesnoadditionalnewpolicies,withgradualimprovementsinenergyefficiencyimprovementsandslowprogressinenergytransition.
•EnergyTechnologyPathway(ETP):aimstoachievenearnet-zeroemissionsinChina’scementindustryby2060.Itconsidersallpillarsofdecarbonizationfrombothsupplyanddemand-sidestrategies.
6
However,thisscenarioemphasizessupply-sidetechnologyinnovation,suchasgreenhydrogen,renewableheating,andcarboncapture,utilization,andstorage(CCUS).Itassumesmajortechnologybreakthroughsandaggressiveadoptionofthesetechnologies,supportedbysignificantinvestmentandpolicysupport.
•CircularEconomyPathway(CEP):aimstoachievenearnet-zeroemissionsinChina’scementindustryby2060.Itconsidersallpillarsofdecarbonizationfrombothsupplyanddemand-sidestrategies.Butthisscenarioemphasizesdemand-sidedeepmitigationmeasures,suchasoptimizingcementconsumption
throughouttheproductvaluechain,improvingbuildingdesign,increasingtheuseofprefabrication,
extendingbuildinglifetime,increasingmaterialsubstitution,andimprovingrecycling,aswellascirculareconomystrategies,suchastheuseofalternativefuelsandlow-carboncements.Itassumesmajorshiftsinbusinessandengineeringpractices,withsignificantregulatoryandpolicysupport.
Table4belowsummarizesthekeydecarbonizationstrategiesandtheemphasisofthemeasuresineachofthethreescenarios.Theboldedareasindicatethesestrategiesareprioritizedintherespectivescenarios.
Table4.Decarbonizationstrategiesofthecementindustryandprioritizationbyscenario
MaterialEfficiency
EnergyEfficiency
ClinkerSubstitution
andAlternative
Cements
FuelSwitching
CCUS
Improvedbuildingdesign;optimizingcementcontentin
concrete
Improvingthermalenergy
efficiency
UseofSCM:coalflyash,blastfurnace
slags
Alternativefuels:industrialwastes,municipalsolid
wastes,agriculturalbyproducts
Post-
combustionCO2capturingtechnologies
Extendingproduct
lifetime;increaseduseofprecastcomponentsandpost-tensioningoffloorslabs
Improvingelectricalenergy
efficiency
UseofSCM:calcinedclay,end-of-life
binder
Onsiterenewables
Oxyfuel
combustionCO2capturingorcalcium
looping
Alternativematerials(e.g.,masstimber);additive
manufacturing
Smartenergymanagement
UseofSCM:otherbyproducts(e.g.,
silicafume,bauxiteresidue,agriculturalbyproductashes)
Hydrogenblending
Integrated
calcium
loopingwiththecalcination
process
Recycling
constructionwastes;
recyclingconcrete
intorecycledconcrete
aggregates
Integrative
design/systemoptimization
Alternativecementchemistry
Concentratedsolar
CO2
mineralization(CO2mixing
andcuring)*
ReferenceScenario
Noadoption
Gradual
improvement
Theclinker-to-
cementratiostaysatthe2020level
Slowreplacementofcoalusing
alternativefuels
Noadoption
Energy
TechnologyPathway
Moderateadoption
Approachingpractical
minimumlevels
Moderatelyusing
clinkersubstitutionsandalternative
cements
Aggressive
implementationofzero-carbonsources(greenH2and
renewableheating)
Aggressivelarge-scaleadoption
CircularEconomyPathway
Aggressiveadoption
Approachingpractical
minimumlevels
Aggressively
reducingthe
clinker-to-cement
ratioandincreasingthedevelopmentanduseofalternative
cements
Aggressivelyusinglow-carbon
alternativefuels**
Limitedadoption
Source:thisanalysis.*CO2mineralizationpotentialismodeledatahighlevelinthispaper.Technologiesaregroupedandcalledas“recarbonation”inthepaper.**Alternativefuelsincludeindustrialwastes,solidwastes,byproducts,agriculturalresidues,and
municipalsolidwastes.Notes:1)SCMstandsforsupplementalcementitiousmaterials.2)Boldedareasareprioritizedwithhighadoption.
Results
7
Improvematerialefficiency
OurmodelingresultsshowthatChina’scementproductionwillsignificantlydecline,mainlydrivenbya
decliningpopulation,slowingurbanizationgrowth,andthestructuralshiftoftheChineseeconomicgrowth
modelfrominvestment(e.g.,intherealestateindustryandinfrastructure)todomesticconsumption.Inthe
ReferenceScenario,totalcementproductiondeclinesfrom2,130Mtin2022to1,608Mtby2030,andfurtherto747Mtby2060.
ThetrendofproductiondeclinedeepensintheCircularEconomyPathway(CEP),wheretotalcementproductionis8%and24%lowerby2030and2060,respectively,comparedtoReference(Figure4).Thisadditionaldemandreductionistheresultoftheaggressiveimplementationofstrategiesthatimprovematerialefficiencyofcementandcement-basedproducts.Forexample,CEPexpectsthattheaveragebuildinglifetimeinChinawillbemore
thandoubled(from30yearsto70yearsby2060)in24%ofthenewbuildingsby2030and80%ofallnew
buildingsby2060(Caoetal.2019;Q.Wang2010;AktasandBilec2012;Sandbergetal.2016).Prefabricationtechniqueswillbewidelyadopted,reaching80%
by2060inallurbanresidentialandcommercialbuildings.Inaddition,optimizingtheamountofcementusedinproductstodeliverthe
performanceneededwhileminimizing
consumption,reducingconstructionwastes,and
recyclingofconcreteproductsarealsoaggressivelyadoptedinthisscenario.
Incontrast,theEnergyTechnologyPathway
(ETP)onlymoderatelyimplementedstrategiesthatcanreducematerialdemand,e.g.,the
doublingofaveragebuildinglifetimeonlyaffects
30%ofthenewbuildingsby2060and
prefabricationonlyreached50%oftheurbanbuildings.Thisresultedina4%and9%
Figure4.CementproductioninChinabyscenario(2020-2060)
reductionoftotalcementproductionby2030and2060,respectivelycomparedtotheReference
Scenario.
UseofSCMandalternativecement
Oneofthecost-effectivewaystoreduceemissionsfromthecementindustryistoblendclinkerwith
supplementalcementitiousmaterials(SCMs),whichnotonlyreducesCO2emissionsfromthermalenergy
productionbutalsoprocess-relatedemissions.China’scementindustryhasbeenusingSCMs,suchasflyashfromcoal-firedpowerplantsandgranulatedblastfurnaceslagsfromtheiron-productionprocess.By2020,
China’sclinker-to-cementratiowas0.66andstayedatthislevelthrough2022.Thisisanincreasefromthe
historicallowof0.56in2013,whereverylow-qualitycementwasallowedandproducedatasignificantscale.Toachievenear-zeroemissionsby2060,ourmodelingshowedthatitisessentialfortheChinesecement
industrytocontinueusingSCMs,expandthecategoriesofSCMs(giventhelimitedsupplyofflyashandBFslaginthefuture),andadoptnewSCMtechnologies.Forexample,studiesshowthatsilicafume,bauxit
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同管理制度职责
- 农业科技园区规划设计与运营管理手册
- 2025年毫州考从业资格证货运试题
- 家政公司家政服务合同
- 建筑钢筋班组合同8篇
- 购销合同格式
- 房屋代理出租合同
- 建继续教育建设工程合同管理
- 2025年景德镇货运从业资格证考试试题及答案
- 第07讲 文言文翻译 讲义 中考语文复习
- 2025年湖南铁路科技职业技术学院单招职业技能测试题库参考答案
- 《ISO 56000-2025创新管理 基础和术语》之1:“引言+范围+术语和定义”专业深度解读与应用指导材料(雷泽佳编写2025A0)-1-150
- DB37-T4817-2025 沥青路面就地冷再生技术规范
- 2025年公共营养师三级理论试题及答案
- 提高设备基础预埋螺栓一次安装合格率
- 煤矿防治水安全质量标准化评分表
- 2024年科技节小学科普知识竞赛题及答案(共100题)
- 氧气管道吹扫、打压方案
- 关于对项目管理的奖惩制度
- A320主起落架收放原理分析及运动仿真
- 2. SHT 3543-2017施工过程文件表格
评论
0/150
提交评论