




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精课堂探究探究一文字语言、图形语言和符号语言的转换我们在立体几何中使用符号语言时,还应明确符号语言在代数与几何中的差异.首先是结合集合知识了解规定符号的背景,找出它们的区别与联系:(1)“∈,∉,⊂,∩”等符号来源于集合符号,但在读法上用几何语言,例如,A∈α,读作“点A在平面α内”,a⊂α读作“直线a在平面α内",α∩β=l读作“平面α,β相交于直线l”.(2)在“A∈α,A∉α,l⊂α,l⊄α”中“A”视为平面α(集合)内的点(元素),直线l(集合)视为平面α(集合)的子集.明确这一点,才能正确使用集合符号.【典型例题1】如图所示,写出图形中的点、直线和平面之间的关系.图(1)可以用几何符号表示为________________.图(2)可以用几何符号表示为________________.解析:图(1)可以用几何符号表示为α∩β=AB,a⊂α,b⊂β,a∥AB,b∥AB.即平面α与平面β相交于直线AB,直线a在平面α内,直线b在平面β内,直线a平行于直线AB,直线b平行于直线AB.图(2)可以用几何符号表示为α∩β=MN,△ABC的三个顶点满足条件A∈MN,B∈α,C∈β,B∉MN,C∉MN.即平面α与平面β相交于直线MN,△ABC的顶点A在直线MN上,点B在α内但不在直线MN上,点C在平面β内但不在直线MN上.答案:α∩β=AB,a⊂α,b⊂β,a∥AB,b∥ABα∩β=MN,△ABC的三个顶点满足条件A∈MN,B∈α,C∈β,B∉MN,C∉MN探究二点线共面问题(1)证明点线共面的主要依据:①如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内(基本性质1);②经过不在同一条直线上的三点,有且只有一个平面(基本性质2及推论).(2)证明点线共面的常用方法:①纳入平面法:先确定一个平面,再证明有关点、线在此平面内;②辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.【典型例题2】(1)有下列四个说法:①过三点确定一个平面;②矩形是平面图形;③三条直线两两相交则确定一个平面;④两个相交平面把空间分成四个区域.其中错误的序号是()A.①和②B.①和③C.②和④D.②和③解析:不共线的三点确定一个平面,故①错;三条直线两两相交,交于三点时,确定一个平面,交于一点时,可确定一个或三个平面,故③错.答案:B(2)如图所示,已知直线a与两平行直线b,c都相交.求证:a,b,c三线共面.思路分析:有两种方法.①先用两平行直线b,c确定一个平面,再证a也在这个平面内;②先由两条相交直线a,b确定一个平面,再证c也在这个平面内.证法一:因为b∥c,则b,c确定一个平面,设为α,如图,令a∩b=A,a∩c=B,所以A∈α,B∈α,所以AB⊂α,即直线a⊂α.所以a,b,c三线共面.证法二:因为a与b是相交直线,则a,b确定一个平面,设为α,如图,设a∩c=A,过A点在α内作直线c′∥b,因为c∥b,c′∥b,所以c∥c′.又因为c与c′相交于点A,所以c与c′重合.所以a,b,c三线共面.点评本题为我们证明共面问题提供了多角度的思维模式,但整体套路都是先用部分对象确定一个平面,再证明剩余对象都在这个平面内.探究三点共线、线共点问题证明多点共线,通常是过其中两点作一条直线,然后证明其他的点也在这条直线上,或者根据已知条件设法证明这些点同时在两个相交平面内,然后根据基本性质3就得到这些点在两个平面的交线上.证明三线共点问题,可把其中一条作为分别过其余两条直线的两个平面的交线,然后再证另两条直线的交点在此直线上,此外还可先将其中一条直线看做某两个平面的交线,证明该交线与另两条直线分别交于两点,再证这两点重合,从而得到三线共点.【典型例题3】(1)如图,α∩β=l,在梯形ABCD中,AD∥BC,且AB⊂α,CD⊂β.求证:AB,CD,l共点(相交于一点).证明:如图,在梯形ABCD中,设AB∩CD=E,因为AB⊂α,CD⊂β,所以E∈α,E∈β.又α∩β=l,所以E∈l,即AB,CD,l共点(相交于一点).(2)如图所示,已知△ABC的三个顶点都不在平面α内,它的三边AB,BC,AC延长后分别交平面α于点P,Q,R.求证:点P,Q,R在同一条直线上.证明:已知AB的延长线交平面α于点P,根据基本性质3,平面ABC与平面α必相交于一条直线,设为l.因为P∈直线AB,所以P∈平面ABC.又直线AB∩α=P,所以P∈α.所以P是平面ABC与平面α的公共点.因为平面ABC∩平面α=l,所以P∈l.同理,Q∈l,R∈l.所以点P,Q,R在同一条直线l上.探究四交线问题画两平面的交线时,关键是找到这两个平面的两个公共点,这两个公共点的连线即是.在找公共点的过程中往往要借助于基本性质1和基本性质3,一般是用基本性质1找到,再用基本性质3证明.【典型例题4】如图所示,G是正方体ABCD.A1B1C1D1的棱DD1延长线上一点,E,F是棱AB,BC的中点.试分别画出过下列点、直线的平面与正方体表面的交线.(1)过点G及直线AC;(2)过三点E,F,D1.思路分析:找出两个平面的两个公共点,则过这两个公共点的直线为两平面的交线.解:(1)画法:连接GA交A1D1于点M;连接GC交C1D1于点N;连接MN,AC,则MA,CN,MN,AC为所求平面与正方体表面的交线.如图①所示.(2)画法:连接EF交DC的延长线于点P,交DA的延长线于点Q;连接D1P交CC1于点M,连接D1Q交AA1于点N;连接MF,NE,则D1M,MF,FE,EN,ND
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年安徽省事业单位招聘考试教师信息技术学科专业知识试卷
- 2025年电子商务师(中级)职业技能鉴定模拟试题库及答案
- 2025年电子废弃物回收产业链优化与无害化处理技术创新报告
- 2025年腹泻病诊疗试题
- 建筑创新论坛2025:3D打印技术趋势与挑战鉴定报告
- 农村社区环境治理与农民合作合同
- 物流运输行业从业经历及收入证明(5篇)
- 2025年环保设备制造业市场前景与创新产品研发动态报告
- 数字化转型中互联网广告投放算法效果评价与优化路径001
- 2025年乳制品行业奶源供应链管理与质量控制报告
- 2024-2025学年下学期高一化学苏教版期末必刷常考题之原电池与电解池
- 公司系统主数据管理制度
- 2025年烟台市中考地理试卷真题(含答案及解析)
- 工厂安全手册从火灾到其他事故的应急响应
- 肯德基服务管理制度
- 2025至2030中国微晶玻璃行业产业运行态势及投资规划深度研究报告
- 部编版二年级语文下册期末测试卷(含答案)
- 2025年甘肃省高考化学试卷真题(含答案解析)
- 公安院校公安专业招生考生患病经历申报表
- 市政工程-综合管廊工程策划质量方案编制指导手册 2025
- 自考本科日语试题及答案
评论
0/150
提交评论