版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版九年级上册数学期末考试试题一、单选题1.由5个大小相同的小正方体搭成的几何体如图所示,它的主视图是(
)A.B.C.D.2.关于x的一元二次方程有两个不相等的实数根,则m的值可能是()A.8 B.9 C.10 D.113.用配方法解方程x2﹣4x﹣5=0时,原方程应变形为()A.(x﹣2)2=9 B.(x﹣1)2=6 C.(x+1)2=6 D.(x+2)2=64.如果两个相似多边形的周长比是2:3,那么它们的面积比为()A.2:3 B.4:9 C.: D.16:815.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为(
)A.(2,1) B.(2,0) C.(3,3) D.(3,1)6.有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、圆四个图案,卡片背面全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是()A. B. C. D.17.在同一时刻的太阳光下,小刚的影子比小红的影子长,那么,在晚上同一路灯下(
)A.不能够确定谁的影子长 B.小刚的影子比小红的影子短C.小刚跟小红的影子一样长 D.小刚的影子比小红的影子长8.关于菱形的性质,以下说法不正确的是(
)A.四条边相等 B.对角线相等 C.对角线互相垂直 D.是轴对称图形9.抛物线的函数表达式为,若将轴向上平移2个单位长度,将轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为(
)A. B.C. D.10.在同一直角坐标系中,一次函数与反比例函数(k≠0)的图象大致是(
)A.B.C.D.二、填空题11.关于x的一元二次方程x2+bx﹣10=0的一个根为2,则b的值为__.12.已知,则的值为_______.13.在一个不透明的袋子中有50个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为36%,估计袋中白球有_______个.14.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.2m,测得AB=1.5m,BC=12.5m,则建筑物CD的高是_______m.15.如图,点是反比例函数的图象上的一点,点在轴的负半轴上且,若的面积为4,则的值为__________.16.如图,在正方形ABCD中,AB=4,E为对角线AC上与A,C不重合的一个动点,过点E作EF⊥AB于点F,EG⊥BC于点G,连接DE,FG,下列结论:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值为3.其中正确结论的序号为__.17.如图,在矩形ABCD中,,,点E为AD的中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当时,AP的长为______.三、解答题18.解方程:x2-7x-18=0.19.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,在DC的延长线上取一点E,连接OE交BC于点F,延长EO交AD于点G.(1)求证:AOG≌COF;(2)若AB=3,BC=4,CE=2,则CF=.20.商场设计了一种促销活动:在一个不透明的箱子里放有4个除数字外完全相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于40元的概率.21.如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,且AD=AF.(1)判断四边形ABFC的形状并证明;(2)若AB=3,∠ABC=60°,求EF的长.22.如图,一次函数的图象与反比例函数的图象交于,两点.(1)求一次函数和反比例函数的解析式;(2)点在轴上,且满足的面积等于4,请直接写出点的坐标.23.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?24.已知,如图,在平面直角坐标系内,点A的坐标为(0,12),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(﹣9,3).(1)求直线l1,l2的表达式;(2)点C为直线OB上一动点(点C不与点O,B重合),作CDy轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.①设点C的纵坐标为n,求点D的坐标(用含n的代数式表示);②若矩形CDEF的面积为48,请直接写出此时点C的坐标.25.如图,在菱形ABCD中,对角线AC,BD交于点O,交CB延长线于E,交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)若,,求OB的长.26.如图,已知点、两点是一次函数的图象与反比例函数图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出不等式的解集;(3)求△AOB的面积.参考答案1.B2.A3.A4.B5.A6.C7.A8.B9.C10.A11.312.13.1814.11.215.16.①②③【分析】①连接BE,可得四边形EFBG为矩形,可得BE=FG;由△AEB≌△AED可得DE=BE,所以DE=FG;②由矩形EFBG可得OF=OB,则∠OBF=∠OFB;由∠OBF=∠ADE,则∠OFB=∠ADE;由四边形ABCD为正方形可得∠BAD=90°,即∠AHD+∠ADH=90°,所以∠AHD+∠OFH=90°,即∠FMH=90°,可得DE⊥FG;③由②中的结论可得∠BFG=∠ADE;④由于点E为AC上一动点,当DE⊥AC时,根据垂线段最短可得此时DE最小,最小值为2,由①知FG=DE,所以FG的最小值为2.【详解】解:①连接BE,交FG于点O,如图,∵EF⊥AB,EG⊥BC,∴∠EFB=∠EGB=90°.∵∠ABC=90°,∴四边形EFBG为矩形.∴FG=BE,OB=OF=OE=OG.∵四边形ABCD为正方形,∴AB=AD,∠BAC=∠DAC=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正确;②延长DE,交FG于M,交FB于点H,∵△ABE≌△ADE,∴∠ABE=∠ADE.由①知:OB=OF,∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°,∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°,∴DE⊥FG.∴②正确;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正确;④∵点E为AC上一动点,∴根据垂线段最短,当DE⊥AC时,DE最小.∵AD=CD=4,∠ADC=90°,∴AC==4.∴DE=AC=2.由①知:FG=DE,∴FG的最小值为2,∴④错误.综上,正确的结论为:①②③.故答案为:①②③.17.【分析】当时,由折叠特征点C,F,P三点在一条直线上,利用Rt△CFE≌Rt△CDE,得到CF=CD=4,设AP=x,在Rt△CBP中利用勾股定理建立方程便可求出x的值;【详解】解:由折叠可得,∠PFE=∠A=90°,AP=PF,EF=AE=DE,当∠CFE=90°时,∠CFP=180°,即点C,F,P三点在一条直线上,矩形ABCD中BC=AD=6,CD=AB=4,在Rt△CFE和Rt△CDE中,CE=CE,EF=ED,∴Rt△CFE≌Rt△CDE(HL),∴CF=CD=4,设AP=x,则CP=x+4,BP=4-x,在Rt△CBP中,CP2=BP2+BC2,∴(x+4)2=(4-x)2+62解得x=,故答案为:;18.【分析】利用因式分解法求解即可.【详解】因式分解,得于是得或
故原方程的解为:.19.(1)见解析;(2)【分析】(1)由“ASA”可证△AOG≌△COF;(2)通过证明△CFE∽△DGE,可得,即可求解.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AO=CO,AD∥BC,∴∠CAD=∠ACB,在△AOG和△COF中,,∴△AOG≌△COF(ASA);(2)解:∵AD∥BC,∴△CFE∽△DGE,∴,∴,∴,∴CF=.【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握图形的性质是解答本题的关键.20.(1)10;(2)列表见解析,【分析】(1)根据小球上标的金额数找出最小的两个数,然后相加即可得出答案;(2)根据题意列出图表得出所有等可能的情况数和该顾客所获得购物券的金额高于40元的情况数,然后根据概率公式即可得出答案.【详解】解:(1)根据题意知,该顾客可能摸出金额最小的两个球是“0元”、“10元”,故至少可得到10元购物券,故答案为:10;(2)根据题意列表如下:01020300\(0,10)(0,20)(0,30)10(10,0)\(10,20)(10,30)20(20,0)(20,10)\(20,30)30(30,0)(30,10)(30,20)\从上表可以看出,共有12种等可能结果,其中该顾客所获得购物券的金额不低于40元的结果有4种结果,所以该顾客所获得购物券的金额不低于40元的概率为=.【点睛】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即.21.(1)矩形,见解析;(2)3【分析】(1)利用AAS判定△ABE≌△FCE,从而得到AB=CF;由已知可得四边形ABFC是平行四边形,BC=AF,根据对角线相等的平行四边形是矩形,可得到四边形ABFC是矩形;(2)先证△ABE是等边三角形,可得AB=AE=EF=3.【详解】解:(1)四边形ABFC是矩形,理由如下:∵四边形ABCD是平行四边形,∴,∴∠BAE=∠CFE,∠ABE=∠FCE,∵E为BC的中点,∴EB=EC,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS),∴AB=CF.∵,∴四边形ABFC是平行四边形,∵AD=BC,AD=AF,∴BC=AF,∴四边形ABFC是矩形.(2)∵四边形ABFC是矩形,∴BC=AF,AE=EF,BE=CE,∴AE=BE,∵∠ABC=60°,∴△ABE是等边三角形,∴AB=AE=3,∴EF=3.【点睛】本题考查了平行四边形的性质与判定,矩形的判定,三角形全等的性质与判定,等边三角形的性质与判定,掌握以上性质定理是解题的关键.22.(1),;(2)(1,0)或(3,0)【分析】(1)根据点B坐标求出m,得到反比例函数解析式,据此求出点A坐标,再将A,B代入一次函数解析式;(2)设点P的坐标为(a,0),求出直线AB与x轴交点,再结合△ABP的面积为4得到关于a的方程,解之即可.【详解】解:(1)由题意可得:点B(3,-2)在反比例函数图像上,∴,则m=-6,∴反比例函数的解析式为,将A(-1,n)代入,得:,即A(-1,6),将A,B代入一次函数解析式中,得,解得:,∴一次函数解析式为;(2)∵点P在x轴上,设点P的坐标为(a,0),∵一次函数解析式为,令y=0,则x=2,∴直线AB与x轴交于点(2,0),由△ABP的面积为4,可得:,即,解得:a=1或a=3,∴点P的坐标为(1,0)或(3,0).【点睛】本题考查一次函数和反比例函数相交的有关问题;通常先求得反比例函数解析式;较复杂三角形的面积可被x轴或y轴分割为2个三角形的面积和.23.(1)2x,,(2)每件商品降价20元,商场日盈利可达2100元.【详解】(1)2x,.(2)解:由题意,得(30+2x)(50-x)=2100解之得x1=15,x2=20.∵该商场为尽快减少库存,降价越多越吸引顾客.∴x=20.答:每件商品降价20元,商场日盈利可达2100元.24.(1)y=﹣x,y=x+12;(2)①(﹣3n,﹣3n+12);②(3,﹣1)或C(﹣12,4)【分析】(1)从图中看以看出l1是正比例函数,l2是一次函数,根据点A、B的坐标,用待定系数法即可求得l1、l2的解析式;(2)①已知点C的纵坐标及点C在直线l1上,求得点C的横坐标;进而知道了点D的横坐标,点D在直线l2上,易得点D的坐标;②根据点C与点D坐标,求出CF=|3n|,CD=|﹣3n+12﹣n|=|﹣4n+12|,利用矩形的面积=长×宽,列出关于n的方程,解方程即可.【详解】解:(1)设直线l1的表达式为y=k1x,∵过点B(﹣9,3),∴﹣9k1=3,解得:k1=﹣,∴直线l1的表达式为y=﹣x;设直线l2的表达式为y=k2x+b,∵过点A(0,12),B(﹣9,3),∴,解得:,∴直线l2的表达式y=x+12;(2)①∵点C在直线l1上,且点C的纵坐标为n,∴n=﹣x,解得:x=﹣3n,∴点C的坐标为(﹣3n,n),∵CD∥y轴,∴点D的横坐标为﹣3n,∵点D在直线l2上,∴y=﹣3n+12,∴D(﹣3n,﹣3n+12);②∵C(﹣3n,n),D(﹣3n,﹣3n+12),∴CF=|3n|,CD=|﹣3n+12﹣n|=|﹣4n+12|,∵矩形CDEF的面积为60,∴S矩形CDEF=CF•CD=|3n|×|﹣4n+12|=48,解得n=﹣1或n=﹣4,当n=﹣1时,﹣3n=3,故C(3,﹣1),当n=4时,﹣3n=1﹣12,故C(﹣12,4).综上所述,点C的坐标为:(3,﹣
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度智能语音助手研发合同
- 《小学英语教学设计》课件全套 陈冬花 第1-10章 小学英语教学设计概述-小学英语课堂管理
- 二零二四年度城市照明设计安装合同3篇
- 二零二四年度房地产项目工程设计合同5篇
- 二零二四年度设备采购合同标的设备技术规格要求4篇
- 2024年度货物供应合同with标的:00万件商品3篇
- 大于胎龄儿的临床护理
- 2024年防静电超净技术产品项目资金需求报告代可行性研究报告
- 二零二四年度金融科技产品研发与许可合同2篇
- 2024年度洛阳租房合同模板2篇
- 危重症患者护理
- 虚拟现实直播兼职主播协议
- 2025届浙江省嘉兴市重点名校高三物理第一学期期中复习检测模拟试题含解析
- 预案演练知识培训
- 第三单元 勇担社会责任(复习课件)-八年级道德与法治上册同步备课系列(统编版)
- 适用于2024年《语言学概论》课程的教案创新策略
- 中小学学校国家智慧教育云平台应用项目实施方案
- 2024-2030年中国干细胞医疗行业趋势分析及投资战略研究报告
- 湖北省武汉市六校联考2024-2025学年高二上学期11月期中英语试题(含答案含听力原文无音频)
- 2024版2024年【教案+】初中美术《铅笔淡彩》
- 网络安全管理操作手册
评论
0/150
提交评论