版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
考点18尺规作图一、尺规作图1.尺规作图的定义在几何里,把限定用没有刻度的直尺和圆规来画图称为尺规作图.2.五种基本作图(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)作一条线段的垂直平分线;(5)过一点作已知直线的垂线.3.根据基本作图作三角形(1)已知三角形的三边,求作三角形;(2)已知三角形的两边及其夹角,求作三角形;(3)已知三角形的两角及其夹边,求作三角形;(4)已知三角形的两角及其中一角的对边,求作三角形;(5)已知直角三角形一直角边和斜边,求作直角三角形.4.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆);(2)作三角形的内切圆.5.有关中心对称或轴对称的作图以及设计图案是中考常见类型.6.作图题的一般步骤(1)已知;(2)求作;(3)分析;(4)作法;(5)证明;(6)讨论.其中步骤(3)(4)(5)(6)一般不作要求,但作图中一定要保留作图痕迹.二、尺规作图的方法1.尺规作图的关键 (1)先分析题目,读懂题意,判断题目要求作什么; (2)读懂题意后,再运用几种基本作图方法解决问题.
2.根据已知条件作等腰三角形或直角三角形求作三角形的关键是确定三角形的三个顶点,作图依据是三角形全等的判定,常借助基本作图来完成,如作直角三角形就先作一个直角.考向一基本作图1.最基本、最常用的尺规作图,通常称为基本作图.2.基本作图有五种:学-科网(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)作一条线段的垂直平分线;(5)过一点作已知直线的垂线.典例1已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).【答案】见解析【解析】如图所示,直线CD即为所求.典例2如图,已知∠MAN,点B在射线AM上.(1)尺规作图:①在AN上取一点C,使BC=BA;②作∠MBC的平分线BD,(保留作图痕迹,不写作法)(2)在(1)的条件下,求证:BD∥AN.【解析】(1)①以B点为圆心,BA长为半径画弧交AN于C点;如图,点C即为所求作;②利用基本作图作BD平分∠MBC;如图,BD即为所求作;1.根据下图中尺规作图的痕迹,可判断AD一定为三角形的A.角平分线 B.中线 C.高线 D.都有可能2.(1)请你用尺规作图,作AD平分∠BAC,交BC于点D(要求:保留作图痕迹);(2)∠ADC的度数.考向二复杂作图利用五种基本作图作较复杂图形.典例2如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段BD与射线AC相交于点O;③在线段AC上作一条线段CF,使CF=AC–BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是__________.【答案】见解析.【解析】(1)①如图所示,射线AC即为所求;②如图所示,线段AB,BC,BD即为所求;③如图所示,线段CF即为所求;(2)根据两点之间,线段最短,可得AB+BC>AC.故答案为:两点之间,线段最短.学科-网3.作图题:学过用尺规作线段与角后,就可以用尺规画出一个与已知三角形一模一样的三角形来.比如给定一个△ABC,可以这样来画:先作一条与AB相等的线段A′B′,然后作∠B′A′C′=∠BAC,再作线段A′C′=AC,最后连接B′C′,这样△A′B′C′就和已知的△ABC一模一样了.请你根据上面的作法画一个与给定的三角形一模一样的三角形来.(请保留作图痕迹)1.根据已知条件作符合条件的三角形,在作图过程中主要依据是A.用尺规作一条线段等于已知线段 B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角 D.不能确定2.下列作图属于尺规作图的是A.画线段MN=3cmB.用量角器画出∠AOB的平分线C.用三角尺作过点A垂直于直线l的直线D.已知∠α,用没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠α3.如图,用直尺和圆规作∠A′O′B′=∠AOB,能够说明作图过程中△C′O′D′≌△COD的依据是A.角角边 B.角边角 C.边角边 D.边边边4.如图,点C在∠AOB的OB边上,用尺规作出了∠AOB=∠NCB,作图痕迹中,弧FG是A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧5.用尺规作图,已知三边作三角形,用到的基本作图是A.作一个角等于已知角B.作已知直线的垂线C.作一条线段等于已知线段D.作角的平分线6.如图,△ABC为等边三角形,要在△ABC外部取一点D,使得△ABC和△DBC全等,下面是两名同学做法:甲:①作∠A的角平分线l;②以B为圆心,BC长为半径画弧,交l于点D,点D即为所求;乙:①过点B作平行于AC的直线l;②过点C作平行于AB的直线m,交l于点D,点D即为所求.A.两人都正确 B.两人都错误C.甲正确,乙错误 D.甲错误,乙正确7.在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于AB的长为半径画弧,相交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=__________.学!科网8.如图,已知线段a,b,c.请画一条线段,使它的长度等于2a+b–c(不写画法,保留痕迹).9.按要求用尺规作图(要求:不写作法,但要保留作图痕迹,并写出结论)已知:线段AB求作:线段AB的垂直平分线MN.10.已知:如图,线段AB和射线BM交于点B.(1)利用尺规完成以下作图,并保留作图痕迹(不写作法).①在射线BM上作一点C,使AC=AB;②作∠ABM的角平分线交AC于D点;③在射线CM上作一点E,使CE=CD,连接DE.(2)在(1)所作的图形中,猜想线段BD与DE的数量关系,并证明.1.(2018•大连)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为A.45° B.60° C.90° D.135°2.(2018•安顺)已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是A. B.C. D.3.(2018•舟山)用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是A. B. C. D.4.(2018•河北)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是A.①–Ⅳ,②–Ⅱ,③–Ⅰ,④–Ⅲ B.①–Ⅳ,②–Ⅲ,③–Ⅱ,④–ⅠC.①–Ⅱ,②–Ⅳ,③–Ⅲ,④–Ⅰ D.①–Ⅳ,②–Ⅰ,③–Ⅱ,④–Ⅲ5.(2018•宜昌)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是A. B. C. D.6.(2018•鄂尔多斯)如图,在菱形ABCD中,按以下步骤作图:①分别以点C和点D为圆心,大于CD的长为半径作弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD交于点E,连接BE,则下列说法错误的是A.∠ABC=60° B.S△ABE=2S△ADEC.若AB=4,则BE=4 D.sin∠CBE=7.(2018•郴州)如图,∠AOB=60°,以点O为圆心,以任意长为半径作弧交OA,OB于C,D两点;分别以C,D为圆心,以大于CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上截取线段OM=6,则M点到OB的距离为A.6 B.2 C.3 D.38.(2018•河南)如图,已知AOBC的顶点O(0,0),A(–1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为A.(–1,2) B.(,2) C.(3–,2) D.(–2,2)9.(2018·巴中)如图,在Rt△ABC中,∠C=90°,按下列步骤作图:①以点B为圆心,适当长为半径画弧,与AB,BC分别交于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧交于点P;③作射线BP交AC于点F;④过点F作FG⊥AB于点G.下列结论正确的是A.CF=FG B.AF=AG C.AF=CF D.AG=FG10.(2018·百色)已知∠AOB=45°,求作∠AOP=22.5°,作法:(1)以O为圆心,任意长为半径画弧分别交OA,OB于点N,M;(2)分别以N,M为圆心,以OM长为半径在角的内部画弧交于点P;(3)作射线OP,则OP为∠AOB的平分线,可得∠AOP=22.5°.根据以上作法,某同学有以下3种证明思路:①可证明△OPN≌△OPM,得∠POA=∠POB,可得;②可证明四边形OMPN为菱形,OP,MN互相垂直平分,得∠POA=∠POB,可得;③可证明△PMN为等边三角形,OP,MN互相垂直平分,从而得∠POA=∠POB,可得.你认为该同学以上3种证明思路中,正确的有A.①② B.①③ C.②③ D.①②③变式拓展变式拓展1.【答案】B【解析】由作图的痕迹可知:点D是线段BC的中点,∴线段AD是△ABC的中线,故选B.如图,在△ABC中,∠C=90°,∠B=40°.3.【解析】首先作一条射线,进而截取AB=A′B′,∠CAB=∠C′A′B′,进而截取AC=A′C′,进而得出答案.如图所示:△A′B′C′即为所求.考点冲关考点冲关1.【答案】C【解析】根据已知条件作符合条件的三角形,需要使三角形的要素符合要求,或者是作边等于已知线段,或者是作角等于已知角,故选C.2.【答案】D【解析】选项A,画线段MN=3cm,需要知道长度,而尺规作图中的直尺是没有长度的,错误;选项B,用量角器画出∠AOB的平分线,量角器不在尺规作图的工具里,错误;选项C,用三角尺作过点A垂直于直线l的直线,三角尺也不在作图工具里,错误;选项D,正确.故选D.3.【答案】D【解析】由题意可知,OD=OC=O′D′=O′C′,CD=C′D′,在△COD和△C′O′D′中,,∴△COD≌△C′O′D′(SSS),故选D.4.【答案】D【解析】作图痕迹中,弧FG是以点E为圆心,DM为半径的弧,故选D.5.【答案】C【解析】根据三边作三角形用到的基本作图是:作一条线段等于已知线段.故选C.6.【答案】A【解析】(甲)如图一所示,∵△ABC为等边三角形,AD是∠BAC的角平分线,∴∠BEA=90°,∴∠BED=90°,∴∠BEA=∠BED=90°,由甲的作法可知,AB=BD,∴∠ABC=∠DBC,在△ABC与△DBC中,,∴△ABC≌△DBC,故甲的作法正确;(乙)如图二所示,∵BD∥AC,CD∥AB,∴∠ABC=∠DCB,∠ACB=∠DBC,在△ABC和△DCB中,,∴△ABC≌△DCB(ASA),∴乙的作法是正确的.故选A.7.【答案】40°【解析】∵根据作图过程和痕迹发现MN垂直平分AB,∴DA=DB,∴∠DBA=∠A=35°,∵CD=BC,∴∠CDB=∠CBD=2∠A=70°,∴∠C=40°,故答案为:40°.8.【解析】利用尺规作图,作一条线段等于已知线段,即可求解.如下图所示,线段OD即为所求.9.【解析】作法:(1)分别以A,B点为圆心,以大于的长为半径作弧,两弧相交于M,N两点;(2)作直线MN,MN即为线段AB的垂直平分线.10.【解析】(1)如图所示:(2)BD=DE,证明:∵BD平分∠ABC,∴∠1=∠ABC.∵AB=AC,∴∠ABC=∠4.∴∠1=∠4.∵CE=CD,∴∠2=∠3.∵∠4=∠2+∠3,∴∠3=∠4.∴∠1=∠3.∴BD=DE.直通中考直通中考1.【答案】A【解析】如图,∵△ABC是等腰直角三角形,∴∠1=45°,∵l∥l',∴∠α=∠1=45°,故选A.2.【答案】D【解析】A、如图所示:此时BA=BP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;B、如图所示:此时PA=PC,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;C、如图所示:此时CA=CP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;D、如图所示:此时BP=AP,故能得出PA+PC=BC,故此选项正确;故选D.3.【答案】C【解析】A、由作图可知,AC⊥BD,且平分BD,即对角线互相平分且垂直的四边形是菱形,正确;B、由作图可知AB=BC,AD=AB,即四边相等的四边形是菱形,正确;C、由作图可知AB=DC,AD=BC,只能得出ABCD是平行四边形,错误;D、由作图可知对角线AC平分对角,可以得出是菱形,正确;故选C.5.【答案】B【解析】已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.(3)分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F,(4)作直线CF.直线CF就是所求的垂线.故选B.6.【答案】C【解析】由作法得AE垂直平分CD,∴∠AED=90°,CE=DE,∵四边形ABCD为菱形,∴AD=2DE,∴∠DAE=30°,∠D=60°,∴∠ABC=60°,所以A选项的说法正确;∵AB=2DE,∴S△ABE=2S△ADE,所以B选项的说法正确;作EH⊥BC交BC的延长线于点H,如图,若AB=4,在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商用热水器2024年度安装工程合同2篇
- 二零二四年服务外包项目实施合同2篇
- 2024年度知识产权许可合同:某专利技术许可协议2篇
- 全新食品加工生产线购买合同(2024版)3篇
- 全新冷链物流配送服务合同(2024版)5篇
- 二零二四年度弱电工程验收合同5篇
- 电力工程施工合同
- 2024年度环保节能技术转让合同2篇
- 2024年度大数据分析与应用合同服务内容扩展说明
- 2024年度林地使用权流转合同3篇
- 2024榆林粮食和物资储备集团有限公司招聘(6人)笔试备考题库及答案解析
- 展厅设计合同范本
- 2024-2025一年级上册科学教科版2.4《气味告诉我们》课件
- 中国文化概要智慧树知到答案2024年温州大学
- 高级护理实践智慧树知到期末考试答案章节答案2024年浙江中医药大学
- 高教版【中职专用】《中国特色社会主义》期末试卷+答案
- 贾玲陈赫多人小品《欢喜密探》剧本台词完整版
- 宣讲《铸牢中华民族共同体意识》全文课件
- MOOC 跨文化交际通识通论-扬州大学 中国大学慕课答案
- 国家开放大学《四史通讲》形考任务专题1-6自测练习参考答案
- 10000中国普通人名大全
评论
0/150
提交评论