版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届吉林省吉林市蛟河市朝鲜族中学高考数学倒计时模拟卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数,则的虚部为()A. B. C. D.12.已知等差数列的公差不为零,且,,构成新的等差数列,为的前项和,若存在使得,则()A.10 B.11 C.12 D.133.宁波古圣王阳明的《传习录》专门讲过易经八卦图,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(“—”表示一根阳线,“——”表示一根阴线).从八卦中任取两卦,这两卦的六根线中恰有四根阴线的概率为()A. B. C. D.4.某人用随机模拟的方法估计无理数的值,做法如下:首先在平面直角坐标系中,过点作轴的垂线与曲线相交于点,过作轴的垂线与轴相交于点(如图),然后向矩形内投入粒豆子,并统计出这些豆子在曲线上方的有粒,则无理数的估计值是()A. B. C. D.5.设点,P为曲线上动点,若点A,P间距离的最小值为,则实数t的值为()A. B. C. D.6.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A. B. C. D.27.若双曲线的渐近线与圆相切,则双曲线的离心率为()A.2 B. C. D.8.由曲线围成的封闭图形的面积为()A. B. C. D.9.若函数的图象上两点,关于直线的对称点在的图象上,则的取值范围是()A. B. C. D.10.对于定义在上的函数,若下列说法中有且仅有一个是错误的,则错误的一个是()A.在上是减函数 B.在上是增函数C.不是函数的最小值 D.对于,都有11.将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为()A. B. C. D.12.等腰直角三角形BCD与等边三角形ABD中,,,现将沿BD折起,则当直线AD与平面BCD所成角为时,直线AC与平面ABD所成角的正弦值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知二项式的展开式中各项的二项式系数和为512,其展开式中第四项的系数__________.14.设函数在区间上的值域是,则的取值范围是__________.15.已知双曲线C:()的左、右焦点为,,为双曲线C上一点,且,若线段与双曲线C交于另一点A,则的面积为______.16.直线与抛物线交于两点,若,则弦的中点到直线的距离等于________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)随着电子阅读的普及,传统纸质媒体遭受到了强烈的冲击.某杂志社近9年来的纸质广告收入如下表所示:根据这9年的数据,对和作线性相关性检验,求得样本相关系数的绝对值为0.243;根据后5年的数据,对和作线性相关性检验,求得样本相关系数的绝对值为0.984.(1)如果要用线性回归方程预测该杂志社2019年的纸质广告收入,现在有两个方案,方案一:选取这9年数据进行预测,方案二:选取后5年数据进行预测.从实际生活背景以及线性相关性检验的角度分析,你觉得哪个方案更合适?附:相关性检验的临界值表:(2)某购物网站同时销售某本畅销书籍的纸质版本和电子书,据统计,在该网站购买该书籍的大量读者中,只购买电子书的读者比例为,纸质版本和电子书同时购买的读者比例为,现用此统计结果作为概率,若从上述读者中随机调查了3位,求购买电子书人数多于只购买纸质版本人数的概率.18.(12分)在中,内角的对边分别为,且(1)求;(2)若,且面积的最大值为,求周长的取值范围.19.(12分)设首项为1的正项数列{an}的前n项和为Sn,数列的前n项和为Tn,且,其中p为常数.(1)求p的值;(2)求证:数列{an}为等比数列;(3)证明:“数列an,2xan+1,2yan+2成等差数列,其中x、y均为整数”的充要条件是“x=1,且y=2”.20.(12分)设函数.(1)若,求实数的取值范围;(2)证明:,恒成立.21.(12分)分别为的内角的对边.已知.(1)若,求;(2)已知,当的面积取得最大值时,求的周长.22.(10分)已知等差数列满足,.(l)求等差数列的通项公式;(2)设,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
先将,化简转化为,再得到下结论.【详解】已知复数,所以,所以的虚部为-1.故选:C【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.2、D【解析】
利用等差数列的通项公式可得,再利用等差数列的前项和公式即可求解.【详解】由,,构成等差数列可得即又解得:又所以时,.故选:D【点睛】本题考查了等差数列的通项公式、等差数列的前项和公式,需熟记公式,属于基础题.3、B【解析】
根据古典概型的概率求法,先得到从八卦中任取两卦基本事件的总数,再找出这两卦的六根线中恰有四根阴线的基本事件数,代入公式求解.【详解】从八卦中任取两卦基本事件的总数种,这两卦的六根线中恰有四根阴线的基本事件数有6种,分别是(巽,坤),(兑,坤),(离,坤),(震,艮),(震,坎),(坎,艮),所以这两卦的六根线中恰有四根阴线的概率是.故选:B【点睛】本题主要考查古典概型的概率,还考查了运算求解的能力,属于基础题.4、D【解析】
利用定积分计算出矩形中位于曲线上方区域的面积,进而利用几何概型的概率公式得出关于的等式,解出的表达式即可.【详解】在函数的解析式中,令,可得,则点,直线的方程为,矩形中位于曲线上方区域的面积为,矩形的面积为,由几何概型的概率公式得,所以,.故选:D.【点睛】本题考查利用随机模拟的思想估算的值,考查了几何概型概率公式的应用,同时也考查了利用定积分计算平面区域的面积,考查计算能力,属于中等题.5、C【解析】
设,求,作为的函数,其最小值是6,利用导数知识求的最小值.【详解】设,则,记,,易知是增函数,且的值域是,∴的唯一解,且时,,时,,即,由题意,而,,∴,解得,.∴.故选:C.【点睛】本题考查导数的应用,考查用导数求最值.解题时对和的关系的处理是解题关键.6、B【解析】
首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.【详解】根据圆柱的三视图以及其本身的特征,将圆柱的侧面展开图平铺,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.7、C【解析】
利用圆心到渐近线的距离等于半径即可建立间的关系.【详解】由已知,双曲线的渐近线方程为,故圆心到渐近线的距离等于1,即,所以,.故选:C.【点睛】本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立三者间的方程或不等关系,本题是一道基础题.8、A【解析】
先计算出两个图像的交点分别为,再利用定积分算两个图形围成的面积.【详解】封闭图形的面积为.选A.【点睛】本题考察定积分的应用,属于基础题.解题时注意积分区间和被积函数的选取.9、D【解析】
由题可知,可转化为曲线与有两个公共点,可转化为方程有两解,构造函数,利用导数研究函数单调性,分析即得解【详解】函数的图象上两点,关于直线的对称点在上,即曲线与有两个公共点,即方程有两解,即有两解,令,则,则当时,;当时,,故时取得极大值,也即为最大值,当时,;当时,,所以满足条件.故选:D【点睛】本题考查了利用导数研究函数的零点,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.10、B【解析】
根据函数对称性和单调性的关系,进行判断即可.【详解】由得关于对称,若关于对称,则函数在上不可能是单调的,故错误的可能是或者是,若错误,则在,上是减函数,在在上是增函数,则为函数的最小值,与矛盾,此时也错误,不满足条件.故错误的是,故选:.【点睛】本题主要考查函数性质的综合应用,结合对称性和单调性的关系是解决本题的关键.11、B【解析】
由余弦的二倍角公式化简函数为,要想在括号内构造变为正弦函数,至少需要向左平移个单位长度,即为答案.【详解】由题可知,对其向左平移个单位长度后,,其图像关于坐标原点对称故的最小值为故选:B【点睛】本题考查三角函数图象性质与平移变换,还考查了余弦的二倍角公式逆运用,属于简单题.12、A【解析】
设E为BD中点,连接AE、CE,过A作于点O,连接DO,得到即为直线AD与平面BCD所成角的平面角,根据题中条件求得相应的量,分析得到即为直线AC与平面ABD所成角,进而求得其正弦值,得到结果.【详解】设E为BD中点,连接AE、CE,由题可知,,所以平面,过A作于点O,连接DO,则平面,所以即为直线AD与平面BCD所成角的平面角,所以,可得,在中可得,又,即点O与点C重合,此时有平面,过C作与点F,又,所以,所以平面,从而角即为直线AC与平面ABD所成角,,故选:A.【点睛】该题考查的是有关平面图形翻折问题,涉及到的知识点有线面角的正弦值的求解,在解题的过程中,注意空间角的平面角的定义,属于中档题目.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先令可得其展开式各项系数的和,又由题意得,解得,进而可得其展开式的通项,即可得答案.【详解】令,则有,解得,则二项式的展开式的通项为,令,则其展开式中的第4项的系数为,故答案为:【点睛】此题考查二项式定理的应用,解题时需要区分展开式中各项系数的和与各二项式系数和,属于基础题.14、.【解析】
配方求出顶点,作出图像,求出对应的自变量,结合函数图像,即可求解.【详解】,顶点为因为函数的值域是,令,可得或.又因为函数图象的对称轴为,且,所以的取值范围为.故答案为:.【点睛】本题考查函数值域,考查数形结合思想,属于基础题.15、【解析】
由已知得即,,可解得,由在双曲线C上,代入即可求得双曲线方程,然后求得直线的方程与双曲线方程联立求得点A坐标,借助,即可解得所求.【详解】由已知得,又,,所以,解得或,由在双曲线C上,所以或,所以或(舍去),因此双曲线C的方程为.又,所以线段的方程为,与双曲线C的方程联立消去x整理得,所以,,所以点A坐标为,所以.【点睛】本题主要考查直线与双曲线的位置关系,考查双曲线方程的求解,考查求三角形面积,考查学生的计算能力,难度较难.16、【解析】
由已知可知直线过抛物线的焦点,求出弦的中点到抛物线准线的距离,进一步得到弦的中点到直线的距离.【详解】解:如图,直线过定点,,而抛物线的焦点为,,弦的中点到准线的距离为,则弦的中点到直线的距离等于.故答案为:.【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,体现了数学转化思想方法,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)选取方案二更合适;(2)【解析】
(1)可以预见,2019年的纸质广告收入会接着下跌,前四年的增长趋势已经不能作为预测后续数据的依据,而后5年的数据得到的相关系数的绝对值,所以有的把握认为与具有线性相关关系,从而可得结论;(2)求得购买电子书的概率为,只购买纸质书的概率为,购买电子书人数多于只购买纸质书人数有两种情况:3人购买电子书,2人购买电子书一人只购买纸质书,由此能求出购买电子书人数多于只购买纸质版本人数的概率.【详解】(1)选取方案二更合适,理由如下:①题中介绍了,随着电子阅读的普及,传统纸媒受到了强烈的冲击,从表格中的数据中可以看出从2014年开始,广告收入呈现逐年下降的趋势,可以预见,2019年的纸质广告收入会接着下跌,前四年的增长趋势已经不能作为预测后续数据的依据.②相关系数越接近1,线性相关性越强,因为根据9年的数据得到的相关系数的绝对值,我们没有理由认为与具有线性相关关系;而后5年的数据得到的相关系数的绝对值,所以有的把握认为与具有线性相关关系.(2)因为在该网站购买该书籍的大量读者中,只购买电子书的读者比例为,纸质版本和电子书同时购买的读者比例为,所以从该网站购买该书籍的大量读者中任取一位,购买电子书的概率为,只购买纸质书的概率为,购买电子书人数多于只购买纸质书人数有两种情况:3人购买电子书,2人购买电子书一人只购买纸质书.概率为:.【点睛】本题主要考查最优方案的选择,考查了相关关系的定义以及互斥事件的概率与独立事件概率公式的应用,考查阅读能力与运算求解能力,属于中档题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.18、(1)(2)【解析】
(1)利用二倍角公式及三角形内角和定理,将化简为,求出的值,结合,求出A的值;(2)写出三角形的面积公式,由其最大值为求出.由余弦定理,结合,,求出的范围,注意.进而求出周长的范围.【详解】解:(1)整理得解得或(舍去)又;(2)由题意知,又,,又周长的取值范围是【点睛】本题考查了二倍角余弦公式,三角形面积公式,余弦定理的应用,求三角形的周长的范围问题.属于中档题.19、(1)p=2;(2)见解析(3)见解析【解析】
(1)取n=1时,由得p=0或2,计算排除p=0的情况得到答案.(2),则,相减得到3an+1=4﹣Sn+1﹣Sn,再化简得到,得到证明.(3)分别证明充分性和必要性,假设an,2xan+1,2yan+2成等差数列,其中x、y均为整数,计算化简得2x﹣2y﹣2=1,设k=x﹣(y﹣2),计算得到k=1,得到答案.【详解】(1)n=1时,由得p=0或2,若p=0时,,当n=2时,,解得a2=0或,而an>0,所以p=0不符合题意,故p=2;(2)当p=2时,①,则②,②﹣①并化简得3an+1=4﹣Sn+1﹣Sn③,则3an+2=4﹣Sn+2﹣Sn+1④,④﹣③得(n∈N*),又因为,所以数列{an}是等比数列,且;(3)充分性:若x=1,y=2,由知an,2xan+1,2yan+2依次为,,,满足,即an,2xan+1,2yan+2成等差数列;必要性:假设an,2xan+1,2yan+2成等差数列,其中x、y均为整数,又,所以,化简得2x﹣2y﹣2=1,显然x>y﹣2,设k=x﹣(y﹣2),因为x、y均为整数,所以当k≥2时,2x﹣2y﹣2>1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度二手私人住宅买卖合同指南2篇
- 2024年度企业合并与收购合同(含股权转让)3篇
- 基于二零二四年标准的绿色建筑材料采购合同
- 2024年度购物中心物业托管合同2篇
- 2024年度环保协议:石料厂生产过程中的环境保护与治理3篇
- 二零二四年化工产品采购供应合同2篇
- 2024年度建筑工程设计合同标的质量保证协议2篇
- 孕期白血病的临床护理
- 阴道转移性肿瘤的临床护理
- 山东省菏泽市牡丹区2024-2025学年九年级上学期期中地理试卷(含答案)
- 3.2工业区位因素及其变化课件高中地理人教版(2019)必修二
- Unit 2 More than fun说课稿2024-2025学年外研版英语七年级上册
- 中国税制学习通超星期末考试答案章节答案2024年
- 【百强校联考】【黑吉辽卷】东北三省三校2025届高三11月期中联考(11.7-11.8)语文试卷+答案
- 2024年中国二轮普通摩托车市场调查研究报告
- 养老护理员考试练习模拟理论知识题库
- 2024-2025 学年三年级语文上册期中素养测评基础卷
- 2023年国家电网有限公司招聘考试真题
- 2024年第九届学宪法、讲宪法竞赛题库(含答案)
- 《PLC技术及应用》期末试卷-B卷及答案
- 汽车维修质量检验与控制预案
评论
0/150
提交评论