北京市西城区第四十四中学2025届高考数学五模试卷含解析_第1页
北京市西城区第四十四中学2025届高考数学五模试卷含解析_第2页
北京市西城区第四十四中学2025届高考数学五模试卷含解析_第3页
北京市西城区第四十四中学2025届高考数学五模试卷含解析_第4页
北京市西城区第四十四中学2025届高考数学五模试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市西城区第四十四中学2025届高考数学五模试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的导函数为,记,,…,N.若,则()A. B. C. D.2.已知集合,则()A. B. C. D.3.设双曲线(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是()A.B.C.D.4.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为,,,且,则此三棱锥外接球表面积的最小值为()A. B. C. D.5.已知函数的最大值为,若存在实数,使得对任意实数总有成立,则的最小值为()A. B. C. D.6.在中,“”是“为钝角三角形”的()A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既不充分也不必要条件7.已知Sn为等比数列{an}的前n项和,a5=16,a3a4=﹣32,则S8=()A.﹣21 B.﹣24 C.85 D.﹣858.函数fxA. B.C. D.9.若复数满足,则()A. B. C. D.10.在中,角所对的边分别为,已知,则()A.或 B. C. D.或11.已知复数z满足,则z的虚部为()A. B.i C.–1 D.112.已知函数在上有两个零点,则的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥为阳马,侧棱底面,且,,设该阳马的外接球半径为,内切球半径为,则__________.14.在棱长为6的正方体中,是的中点,点是面,所在平面内的动点,且满足,则三棱锥的体积的最大值是__________.15.从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为______________.(用数字作答)16.四边形中,,,,,则的最小值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分数,满分100分,按照大于或等于80分的为优秀,小于80分的为合格,为了解学生的在该维度的测评结果,在毕业班中随机抽出一个班的数据.该班共有60名学生,得到如下的列联表:优秀合格总计男生6女生18合计60已知在该班随机抽取1人测评结果为优秀的概率为.(1)完成上面的列联表;(2)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?(3)现在如果想了解全校学生在该维度的表现情况,采取简单随机抽样方式在全校学生中抽取少数一部分来分析,请你选择一个合适的抽样方法,并解释理由.附:0.250.100.0251.3232.7065.02418.(12分)已知函数.(1)当时,解关于x的不等式;(2)当时,若对任意实数,都成立,求实数的取值范围.19.(12分)已知函数,曲线在点处的切线方程为.(1)求,的值;(2)证明函数存在唯一的极大值点,且.20.(12分)设抛物线的焦点为,准线为,为过焦点且垂直于轴的抛物线的弦,已知以为直径的圆经过点.(1)求的值及该圆的方程;(2)设为上任意一点,过点作的切线,切点为,证明:.21.(12分)如图,在正四棱锥中,,点、分别在线段、上,.(1)若,求证:⊥;(2)若二面角的大小为,求线段的长.22.(10分)已知椭圆,左、右焦点为,点为上任意一点,若的最大值为3,最小值为1.(1)求椭圆的方程;(2)动直线过点与交于两点,在轴上是否存在定点,使成立,说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

通过计算,可得,最后计算可得结果.【详解】由题可知:所以所以猜想可知:由所以所以故选:D【点睛】本题考查导数的计算以及不完全归纳法的应用,选择题、填空题可以使用取特殊值,归纳猜想等方法的使用,属中档题.2、B【解析】

计算,再计算交集得到答案【详解】,表示偶数,故.故选:.【点睛】本题考查了集合的交集,意在考查学生的计算能力.3、A【解析】

由题意,根据双曲线的对称性知在轴上,设,则由得:,因为到直线的距离小于,所以,即,所以双曲线渐近线斜率,故选A.4、B【解析】

根据三视图得到几何体为一三棱锥,并以该三棱锥构造长方体,于是得到三棱锥的外接球即为长方体的外接球,进而得到外接球的半径,求得外接球的面积后可求出最小值.【详解】由已知条件及三视图得,此三棱锥的四个顶点位于长方体的四个顶点,即为三棱锥,且长方体的长、宽、高分别为,∴此三棱锥的外接球即为长方体的外接球,且球半径为,∴三棱锥外接球表面积为,∴当且仅当,时,三棱锥外接球的表面积取得最小值为.故选B.【点睛】(1)解决关于外接球的问题的关键是抓住外接的特点,即球心到多面体的顶点的距离都等于球的半径,同时要作一圆面起衬托作用.(2)长方体的外接球的直径即为长方体的体对角线,对于一些比较特殊的三棱锥,在研究其外接球的问题时可考虑通过构造长方体,通过长方体的外球球来研究三棱锥的外接球的问题.5、B【解析】

根据三角函数的两角和差公式得到,进而可以得到函数的最值,区间(m,n)长度要大于等于半个周期,最终得到结果.【详解】函数则函数的最大值为2,存在实数,使得对任意实数总有成立,则区间(m,n)长度要大于等于半个周期,即故答案为:B.【点睛】这个题目考查了三角函数的两角和差的正余弦公式的应用,以及三角函数的图像的性质的应用,题目比较综合.6、C【解析】分析:从两个方向去判断,先看能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出成立,从而必要性也不满足,从而选出正确的结果.详解:由题意可得,在中,因为,所以,因为,所以,,结合三角形内角的条件,故A,B同为锐角,因为,所以,即,所以,因此,所以是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若是钝角三角形,也推不出“,故必要性不成立,所以为既不充分也不必要条件,故选D.点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征.7、D【解析】

由等比数列的性质求得a1q4=16,a12q5=﹣32,通过解该方程求得它们的值,求首项和公比,根据等比数列的前n项和公式解答即可.【详解】设等比数列{an}的公比为q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,则,则,故选:D.【点睛】本题主要考查等比数列的前n项和,根据等比数列建立条件关系求出公比是解决本题的关键,属于基础题.8、A【解析】

由f12=e-14>0排除选项D;【详解】由f12=e-14>0,可排除选项D,f-1=-e【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及x→09、C【解析】

把已知等式变形,利用复数代数形式的除法运算化简,再由复数模的计算公式求解.【详解】解:由,得,∴.故选C.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.10、D【解析】

根据正弦定理得到,化简得到答案.【详解】由,得,∴,∴或,∴或.故选:【点睛】本题考查了正弦定理解三角形,意在考查学生的计算能力.11、C【解析】

利用复数的四则运算可得,即可得答案.【详解】∵,∴,∴,∴复数的虚部为.故选:C.【点睛】本题考查复数的四则运算、虚部概念,考查运算求解能力,属于基础题.12、C【解析】

对函数求导,对a分类讨论,分别求得函数的单调性及极值,结合端点处的函数值进行判断求解.【详解】∵,.当时,,在上单调递增,不合题意.当时,,在上单调递减,也不合题意.当时,则时,,在上单调递减,时,,在上单调递增,又,所以在上有两个零点,只需即可,解得.综上,的取值范围是.故选C.【点睛】本题考查了利用导数解决函数零点的问题,考查了函数的单调性及极值问题,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

该阳马补形所得到的长方体的对角线为外接球的直径,由此能求出,内切球在侧面内的正视图是的内切圆,从而内切球半径为,由此能求出.【详解】四棱锥为阳马,侧棱底面,且,,设该阳马的外接球半径为,该阳马补形所得到的长方体的对角线为外接球的直径,,,侧棱底面,且底面为正方形,内切球在侧面内的正视图是的内切圆,内切球半径为,故.故答案为.【点睛】本题考查了几何体外接球和内切球的相关问题,补形法的运用,以及数学文化,考查了空间想象能力,是中档题.解决球与其他几何体的切、接问题,关键是能够确定球心位置,以及选择恰当的角度做出截面.球心位置的确定的方法有很多,主要有两种:(1)补形法(构造法),通过补形为长方体(正方体),球心位置即为体对角线的中点;(2)外心垂线法,先找出几何体中不共线三点构成的三角形的外心,再找出过外心且与不共线三点确定的平面垂直的垂线,则球心一定在垂线上.14、【解析】

根据与相似,,过作于,利用体积公式求解OP最值,根据勾股定理得出,,利用函数单调性判断求解即可.【详解】∵在棱长为6的正方体中,是的中点,点是面所在平面内的动点,且满足,又,∴与相似∴,即,过作于,设,,∴,化简得:,,根据函数单调性判断,时,取得最大值36,,在正方体中平面.三棱锥体积的最大值为【点睛】本题考查三角形相似,几何体体积以及函数单调性的综合应用,难度一般.15、5040.【解析】分两类,一类是甲乙都参加,另一类是甲乙中选一人,方法数为。填5040.【点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,甲与乙是两个特殊元素,对于特殊元素“优先法”,所以有了分类。本题还涉及不相邻问题,采用“插空法”。16、【解析】

在中利用正弦定理得出,进而可知,当时,取最小值,进而计算出结果.【详解】,如图,在中,由正弦定理可得,即,故当时,取到最小值为.故答案为:.【点睛】本题考查解三角形,同时也考查了常见的三角函数值,考查逻辑推理能力与计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)在犯错误的概率不超过0.10的前提下认为“性别与测评结果有关系”(3)见解析.【解析】

(1)由已知抽取的人中优秀人数为20,这样结合已知可得列联表;(2)根据列联表计算,比较后可得;(3)由于性别对结果有影响,因此用分层抽样法.【详解】解:(1)优秀合格总计男生62228女生141832合计204060(2)由于,因此在犯错误的概率不超过0.10的前提下认为“性别与测评结果有关系”.(3)由(2)可知性别有可能对是否优秀有影响,所以采用分层抽样按男女生比例抽取一定的学生,这样得到的结果对学生在该维度的总体表现情况会比较符合实际情况.【点睛】本题考查独立性检验,考查分层抽样的性质.考查学生的数据处理能力.属于中档题.18、(1)(2)【解析】

(1)当时,利用含有一个绝对值不等式的解法,求得不等式的解集.(2)对分成和两类,利用零点分段法去绝对值,将表示为分段函数的形式,求得的最小值,进而求得的取值范围.【详解】(1)当时,由得由得解:,得∴当时,关于的不等式的解集为(2)①当时,,所以在上是减函数,在是增函数,所以,由题设得,解得.②当时,同理求得.综上所述,的取值范围为.【点睛】本小题主要考查含有一个绝对值不等式的求法,考查利用零点分段法解含有两个绝对值的不等式,属于中档题.19、(1)(2)证明见解析【解析】

(1)求导,可得(1),(1),结合已知切线方程即可求得,的值;(2)利用导数可得,,再构造新函数,利用导数求其最值即可得证.【详解】(1)函数的定义域为,,则(1),(1),故曲线在点,(1)处的切线方程为,又曲线在点,(1)处的切线方程为,,;(2)证明:由(1)知,,则,令,则,易知在单调递减,又,(1),故存在,使得,且当时,,单调递增,当,时,,单调递减,由于,(1),(2),故存在,使得,且当时,,,单调递增,当,时,,,单调递减,故函数存在唯一的极大值点,且,即,则,令,则,故在上单调递增,由于,故(2),即,.【点睛】本题考查导数的几何意义以及利用导数研究函数的单调性,极值及最值,考查推理论证能力,属于中档题.20、(1),圆的方程为:.(2)答案见解析【解析】

(1)根据题意,可知点的坐标为,即可求出的值,即可求出该圆的方程;(2)由题易知,直线的斜率存在且不为0,设的方程为,与抛物线联立方程组,根据,求得,化简解得,进而求得点的坐标为,分别求出,,利用向量的数量积为0,即可证出.【详解】解:(1)易知点的坐标为,所以,解得.又圆的圆心为,所以圆的方程为.(2)证明易知,直线的斜率存在且不为0,设的方程为,代入的方程,得.令,得,所以,解得.将代入的方程,得,即点的坐标为.所以,,.故.【点睛】本题考查抛物线的标准方程和圆的方程,考查直线和抛物线的位置关系,利用联立方程组、求交点坐标以及向量的数量积,考查解题能力和计算能力.21、(1)证明见解析;(2).【解析】试题分析:由于图形是正四棱锥,因此设AC、BD交点为O,则以OA为x轴正方向,以OB为y轴正方向,OP为z轴正方向建立空间直角坐标系,可用空间向量法解决问题.(1)只要证明=0即可证明垂直;(2)设=λ,得M(λ,0,1-λ),然后求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论