新高考数学一轮复习考点精讲练+易错题型第34讲 等比数列(解析版)_第1页
新高考数学一轮复习考点精讲练+易错题型第34讲 等比数列(解析版)_第2页
新高考数学一轮复习考点精讲练+易错题型第34讲 等比数列(解析版)_第3页
新高考数学一轮复习考点精讲练+易错题型第34讲 等比数列(解析版)_第4页
新高考数学一轮复习考点精讲练+易错题型第34讲 等比数列(解析版)_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第34讲等比数列【基础知识网络图】等比数列等比数列等比中项通项公式及相关性质等比数列与函数的关系【基础知识全通关】1.等比数列的概念如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数SKIPIF1<0,那么这个数列叫做等比数列,这个常数叫做等比数列的公比.注意:(1)等比数列的每一项都不可能为0;(2)公比是每一项与其前一项的比,前后次序不能颠倒,且公比是一个与SKIPIF1<0无关的常数.2.等比中项如果在SKIPIF1<0与SKIPIF1<0中间插入一个数SKIPIF1<0,使SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比数列,那么SKIPIF1<0叫做SKIPIF1<0与SKIPIF1<0的等比中项,此时SKIPIF1<0.3.等比数列的通项公式及其变形首项为SKIPIF1<0,公比为SKIPIF1<0的等比数列的通项公式是SKIPIF1<0.等比数列通项公式的变形:SKIPIF1<0.4.等比数列与指数函数的关系等比数列SKIPIF1<0的通项公式SKIPIF1<0还可以改写为SKIPIF1<0,当SKIPIF1<0且SKIPIF1<0时,SKIPIF1<0是指数函数,SKIPIF1<0是指数型函数,因此数列SKIPIF1<0的图象是函数SKIPIF1<0的图象上一些孤立的点.SKIPIF1<0当SKIPIF1<0或SKIPIF1<0时,SKIPIF1<0是递增数列;SKIPIF1<0当SKIPIF1<0或SKIPIF1<0时,SKIPIF1<0是递减数列;SKIPIF1<0当SKIPIF1<0时,SKIPIF1<0为常数列SKIPIF1<0;SKIPIF1<0当SKIPIF1<0时,SKIPIF1<0为摆动数列,所有的奇数项(偶数项)同号,奇数项与偶数项异号.【考点研习一点通】考点一:等比数列的概念、公式例1.若数列SKIPIF1<0为等比数列,SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0.【思路】:求解等比数列的项,首先要根据已知条件求出数列的通项公式。【解析】:法一:令数列SKIPIF1<0的首项为SKIPIF1<0,公比为q,则有SKIPIF1<0即SKIPIF1<0,(2)÷(1)有SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0.法二:∵SKIPIF1<0为等比数列,∴SKIPIF1<0即SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0.法三:∵SKIPIF1<0为等比数列,∴SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,…也为等比数列,∴SKIPIF1<0,∴SKIPIF1<0又∵SKIPIF1<0.∴SKIPIF1<0【总结】:熟悉等比数列的概念,基本公式及性质,要依条件恰当的选择入手公式,性质,从而简洁地解决问题,减少运算量。【变式1-1】已知等比数列SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0。法一:∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0从而SKIPIF1<0解之得SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0当SKIPIF1<0时,SKIPIF1<0;当SKIPIF1<0时,SKIPIF1<0。故SKIPIF1<0或SKIPIF1<0。法二:由等比数列的定义知SKIPIF1<0,SKIPIF1<0代入已知得SKIPIF1<0SKIPIF1<0SKIPIF1<0将SKIPIF1<0代入(1)得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0由(2)得SKIPIF1<0或SKIPIF1<0,以下同方法一。考点二、等比数列的性质例2.(1)等比数列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0(2)设SKIPIF1<0为等比数列SKIPIF1<0的前n项和,已知SKIPIF1<0,则公比q=()A.3 B.4C.5 D.6【答案】:AB【解析】:(1)SKIPIF1<0,所以SKIPIF1<0又因为SKIPIF1<0,则SKIPIF1<0所以SKIPIF1<0,则SKIPIF1<0(2)SKIPIF1<0,两式相减:SKIPIF1<0所以SKIPIF1<0【变式2-1】等比数列SKIPIF1<0中,若SKIPIF1<0,求SKIPIF1<0.【解析】:∵SKIPIF1<0是等比数列,∴SKIPIF1<0∴SKIPIF1<0SKIPIF1<0考点三:等比数列的判断与证明例3.已知数列{an}的前n项和Sn满足:log5(Sn+1)=n(n∈N+),求出数列{an}的通项公式,并判断{an}是何种数列?【解析】:∵log5(Sn+1)=n,∴Sn+1=5n,∴Sn=5n-1(n∈N+),∴a1=S1=51-1=4,当n≥2时,an=Sn-Sn-1=(5n-1)-(5n-1-1)=5n-5n-1=5n-1(5-1)=4×5n-1而n=1时,4×5n-1=4×51-1=4=a1,∴n∈N+时,an=4×5n-1由上述通项公式,可知{an}为首项为4,公比为5的等比数列.【变式3-1】已知数列{Cn},其中Cn=2n+3n,且数列{Cn+1-pCn}为等比数列,求常数p。【解析】:p=2或p=3;∵{Cn+1-pCn}是等比数列,∴对任意n∈N且n≥2,有(Cn+1-pCn)2=(Cn+2-pCn+1)(Cn-pCn-1)∵Cn=2n+3n,∴[(2n+1+3n+1)-p(2n+3n)]2=[(2n+2+3n+2)-p(2n+1+3n+1)]·[(2n+3n)-p(2n-1+3n-1)]即[(2-p)·2n+(3-p)·3n]2=[(2-p)·2n+1+(3-p)·3n+1]·[(2-p)·2n-1+(3-p)·3n-1]整理得:SKIPIF1<0,解得:p=2或p=3,显然Cn+1-pCn≠0,故p=2或p=3为所求.【变式3-2】设{an}、{bn}是公比不相等的两个等比数列,Cn=an+bn,证明数列{Cn}不是等比数列.证明:设数列{an}、{bn}的公比分别为p,q,且p≠q为证{Cn}不是等比数列,只需证SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,又∵p≠q,a1≠0,b1≠0,∴SKIPIF1<0即SKIPIF1<0∴数列{Cn}不是等比数列.考点四:等比数列的其他考点例4.已知三个数成等比数列,若前两项不变,第三项减去32,则成等差数列.若再将此等差数列的第二项减去4,则又成等比数列.求原来的三个数.【思路】:结合数列的性质设未知数。【解析】:法一:设成等差数列的三数为a-d,a,a+d.则a-d,a,a+d+32成等比数列,a-d,a-4,a+d成等比数列.∴SKIPIF1<0由(2)得a=SKIPIF1<0...........(3)由(1)得32a=d2+32d..........(4)(3)代(4)消a,解得SKIPIF1<0或d=8.∴当SKIPIF1<0时,SKIPIF1<0;当d=8时,a=10∴原来三个数为SKIPIF1<0,SKIPIF1<0,SKIPIF1<0或2,10,50.法二:设原来三个数为a,aq,aq2,则a,aq,aq2-32成等差数列,a,aq-4,aq2-32成等比数列∴SKIPIF1<0由(2)得SKIPIF1<0,代入(1)解得q=5或q=13当q=5时a=2;当q=13时SKIPIF1<0.∴原来三个数为2,10,50或SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【总结】:选择适当的设法可使方程简单易解。一般地,三数成等差数列,可设此三数为a-d,a,a+d;若三数成等比数列,可设此三数为SKIPIF1<0,x,xy。但还要就问题而言,这里解法二中采用首项a,公比q来解决问题反而简便。【变式4-1】有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和为12,求这四个数.【解析】:设四个数分别是x,y,12-y,16-x∴SKIPIF1<0由(1)得x=3y-12,代入(2)得144-24y+y2=y(16-3y+12)∴144-24y+y2=-3y2+28y,∴4y2-52y+144=0,∴y2-13y+36=0,∴y=4或9,∴x=0或15,∴四个数为0,4,8,16或15,9,3,1.【考点易错】1.已知SKIPIF1<0是等比数列,且SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0等于A.SKIPIF1<0B.24C.SKIPIF1<0D.48【答案】B【解析】由题意知SKIPIF1<0,则SKIPIF1<0,所以SKIPIF1<0,故选B.2.各项都是正数的等比数列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差数列,则SKIPIF1<0的值为A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】B【解析】设SKIPIF1<0的公比为q(SKIPIF1<0),根据题意可知SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0(负值舍去),而SKIPIF1<0,故选B.【名师点睛】该题考查的是数列的有关问题,涉及的知识点有:三个数成等差数列的条件,等比数列的性质等,注意题中的隐含条件.3.在等比数列SKIPIF1<0中,SKIPIF1<0是方程SKIPIF1<0的根,则SKIPIF1<0A.SKIPIF1<0B.2C.1D.SKIPIF1<0【答案】A【解析】由等比数列的性质知SKIPIF1<0,故SKIPIF1<0,故选A.4.已知等比数列SKIPIF1<0的前n项和为SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0_______.【答案】140【解析】方法1:由SKIPIF1<0,SKIPIF1<0,易得公比SKIPIF1<0,根据等比数列前n项和的性质,可得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.方法2:根据等比数列前n项和的性质,可得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.方法3:根据等比数列前n项和的性质,可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比数列,则SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.5.设SKIPIF1<0为等比数列,给出四个数列:①SKIPIF1<0,②SKIPIF1<0,③SKIPIF1<0,④SKIPIF1<0.其中一定为等比数列的是A.①③ B.②④C.②③ D.①②【答案】D【解析】设SKIPIF1<0,①SKIPIF1<0,所以数列SKIPIF1<0是等比数列;②SKIPIF1<0,所以数列SKIPIF1<0是等比数列;③SKIPIF1<0不是一个常数,所以数列SKIPIF1<0不是等比数列;④SKIPIF1<0不是一个常数,所以数列SKIPIF1<0不是等比数列.故选D.【名师点睛】本题主要考查等比数列的判定,意在考查学生对该知识的理解掌握水平和分析推理能力.求解时,设SKIPIF1<0,再利用等比数列的定义和性质逐一分析判断每一个选项得解.6.已知数列SKIPIF1<0满足SKIPIF1<0.(1)证明:SKIPIF1<0是等比数列;(2)求SKIPIF1<0.【答案】(1)证明见解析;(2)SKIPIF1<0.【解析】(1)由SKIPIF1<0得:SKIPIF1<0,因为SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,从而由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0是以SKIPIF1<0为首项,SKIPIF1<0为公比的等比数列.(2)由(1)得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.【名师点睛】本题考查了数列中递推公式的应用,通过构造数列证明等比数列,分项求和等知识点.形如SKIPIF1<0(SKIPIF1<0),在构造数列时,可在等式两边同时加上SKIPIF1<0构成等比数列.(1)利用递推公式可以得到SKIPIF1<0的表达式,两个式子相减即可得到SKIPIF1<0与SKIPIF1<0的表达式;构造数列{SKIPIF1<0},即可证明{SKIPIF1<0}为等比数列.(2)利用{SKIPIF1<0}为等比数列,可求得{SKIPIF1<0}的通项公式;将{SKIPIF1<0}分为等比数列和等差数列两个部分分别求和,再相加即可得出奇数项的和.7.若数列SKIPIF1<0满足SKIPIF1<0,则称数列SKIPIF1<0为“平方递推数列”.已知数列SKIPIF1<0中,SKIPIF1<0,点SKIPIF1<0在函数SKIPIF1<0的图象上,其中n为正整数.(1)证明:数列SKIPIF1<0是“平方递推数列”,且数列SKIPIF1<0为等比数列;(2)设(1)中“平方递推数列”的前n项之积为SKIPIF1<0,求SKIPIF1<0;(3)在(2)的条件下,记SKIPIF1<0,设数列SKIPIF1<0的前n项和为SKIPIF1<0,求使SKIPIF1<0成立的n的最小值.【答案】(1)见解析;(2)SKIPIF1<0;(3)SKIPIF1<0.【解析】(1)由题意得SKIPIF1<0,即SKIPIF1<0,则是“平方递推数列”.对SKIPIF1<0两边取对数得SKIPIF1<0,所以数列SKIPIF1<0是以SKIPIF1<0为首项,2为公比的等比数列.(2)由(1)知SKIPIF1<0,则SKIPIF1<0(3)由(2)知SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故使SKIPIF1<0成立的n的最小值为SKIPIF1<0.【巩固提升】1.已知SKIPIF1<0是等差数列,公差SKIPIF1<0不为零,前SKIPIF1<0项和是SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比数列,则()A.SKIPIF1<0,SKIPIF1<0B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0D.SKIPIF1<0,SKIPIF1<0【答案】B【解析】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比数列,SKIPIF1<0即SKIPIF1<0SKIPIF1<0解得:SKIPIF1<0SKIPIF1<0又SKIPIF1<0SKIPIF1<02.在等比数列{an}中,Sn表示前n项和,若a3=2S2+1,a4=2S3+1,则公比q=()A.﹣3 B.﹣1 C.3 D.1【解析】等比数列{an}中,因为a3=2S2+1,a4=2S3+1,得a4﹣a3=2S3+1﹣(2S2+1)=2(S3﹣S2)=2a3,即a4=3a3,解得q=3,故选C.3.已知数列SKIPIF1<0是递增的等比数列,SKIPIF1<0,则数列SKIPIF1<0的前SKIPIF1<0项和等于.【答案】SKIPIF1<0【解析】由题意,SKIPIF1<0,解得SKIPIF1<0或者SKIPIF1<0,而数列SKIPIF1<0是递增的等比数列,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,因而数列SKIPIF1<0的前SKIPIF1<0项和SKIPIF1<0.4.在等比数列{an}中,(1)已知:a1=2,S3=26,求q与a3;(2)已知:an>0且a2a4+2a3a5+a4a6=25,求a3+a5;(3)已知:a4=3,求a1a2a3……a7;(4)已知:对任意自然数n都有a1+a2+……+an=2n-1,求+……+.【解析】:(1)2(1+q+q2)=26,解得q=3或q=-4.当q=3时a3=18;当q=-4时,a3=32.(2)(a3+a5)2=+2a3a5+=a2a4+2a3a5+a4a6=25,又an>0,∴a3+a5=5.(3)∵a1a7=a2a6=a3a5=,∴a1a2a3……a7==37=2187.(4)依题意Sn=2n-1,易求得an=2n-1,a1=1且公比为2,可知,,……成等比数列,公比为4.∴++……+==.5.有四个数,前三个成等比数列,且和为19;后三个成等差数列,且和为12.求这四个数.【解析】:依题意设这四个数为y,x-d,x,x+d,∵后三个数和为12,∴(x-d)+x+(x+d)=12,解得x=12.又前三个数成等比且和为19,∴,解得或,∴这四个数为9,6,4,2或25,-10,4,18.6.已知{an}为等比数列,(1)若a1a4a10a13-a5a9-6=0,求a2a12.(2)若a1+a2+a3=2,a7+a8+a9=8,求a1+a2+a3+…+a3m-2+a3m-1+a3m.【解析】:(1)原式=(a2a12)2-a2a12-6=0a2a12=3或a2a12=-2(舍去);(2)∴,由A1=a1+a2+a3=2a1(1+q+q2)=2,A2=a4+a5+a6=a1q3(1+q+q2),A3=a1q6(1+q+q2),A1,A2,A3成等比数列,且首项为A1公比为q3,由前面得q3=±2,则或.7.已知数列的前n项和,其中.(I)证明是等比数列,并求其通项公式;(II)若,求.【解析】(I)由题意得SKIPIF1<0由SKIPIF1<0由SKIPIF1<0所以SKIPIF1<0因此是首项为SKIPIF1<0,公比为SKIPIF1<0的等比数列,于是SKIPIF1<0(II)由(I)得SKIPIF1<0SKIPIF1<0解得SKIPIF1<08.若a1=1,q≠1的等比数列前n项和为S,则原等比数列各项的倒数组成的数列的前n项和T是多少?【解析】:∵S=a1+a2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论