版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省邯郸市魏县第五中学2023-2024学年高三下学期学业质量监测(二模)数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,正方体的棱长为1,动点在线段上,、分别是、的中点,则下列结论中错误的是()A., B.存在点,使得平面平面C.平面 D.三棱锥的体积为定值2.已知Sn为等比数列{an}的前n项和,a5=16,a3a4=﹣32,则S8=()A.﹣21 B.﹣24 C.85 D.﹣853.“幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中.“阶幻方”是由前个正整数组成的—个阶方阵,其各行各列及两条对角线所含的个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为()A.75 B.65 C.55 D.454.若为纯虚数,则z=()A. B.6i C. D.205.在中,,则=()A. B.C. D.6.给出以下四个命题:①依次首尾相接的四条线段必共面;②过不在同一条直线上的三点,有且只有一个平面;③空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等;④垂直于同一直线的两条直线必平行.其中正确命题的个数是()A.0 B.1 C.2 D.37.在区间上随机取一个数,使得成立的概率为等差数列的公差,且,若,则的最小值为()A.8 B.9 C.10 D.118.已知数列的前项和为,且,,,则的通项公式()A. B. C. D.9.已知奇函数是上的减函数,若满足不等式组,则的最小值为()A.-4 B.-2 C.0 D.410.已知椭圆(a>b>0)与双曲线(a>0,b>0)的焦点相同,则双曲线渐近线方程为()A. B.C. D.11.过双曲线的左焦点作直线交双曲线的两天渐近线于,两点,若为线段的中点,且(为坐标原点),则双曲线的离心率为()A. B. C. D.12.运行如图所示的程序框图,若输出的值为300,则判断框中可以填()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线()的左右焦点分别为,为坐标原点,点为双曲线右支上一点,若,,则双曲线的离心率的取值范围为_____.14.实数,满足,如果目标函数的最小值为,则的最小值为_______.15.(5分)已知椭圆方程为,过其下焦点作斜率存在的直线与椭圆交于两点,为坐标原点,则面积的取值范围是____________.16.设数列的前n项和为,且,若,则______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)若函数在处取得极值1,证明:(2)若恒成立,求实数的取值范围.18.(12分)已知动圆Q经过定点,且与定直线相切(其中a为常数,且).记动圆圆心Q的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线?(2)设点P的坐标为,过点P作曲线C的切线,切点为A,若过点P的直线m与曲线C交于M,N两点,则是否存在直线m,使得?若存在,求出直线m斜率的取值范围;若不存在,请说明理由.19.(12分)中国古代数学经典《数书九章》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马中,底面ABCD是矩形.平面,,,以的中点O为球心,AC为直径的球面交PD于M(异于点D),交PC于N(异于点C).(1)证明:平面,并判断四面体MCDA是否是鳖臑,若是,写出它每个面的直角(只需写出结论);若不是,请说明理由;(2)求直线与平面所成角的正弦值.20.(12分)在极坐标系中,曲线的极坐标方程为(1)求曲线与极轴所在直线围成图形的面积;(2)设曲线与曲线交于,两点,求.21.(12分)在中,为边上一点,,.(1)求;(2)若,,求.22.(10分)如图,在中,角的对边分别为,且满足,线段的中点为.(Ⅰ)求角的大小;(Ⅱ)已知,求的大小.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据平行的传递性判断A;根据面面平行的定义判断B;根据线面垂直的判定定理判断C;由三棱锥以三角形为底,则高和底面积都为定值,判断D.【详解】在A中,因为分别是中点,所以,故A正确;在B中,由于直线与平面有交点,所以不存在点,使得平面平面,故B错误;在C中,由平面几何得,根据线面垂直的性质得出,结合线面垂直的判定定理得出平面,故C正确;在D中,三棱锥以三角形为底,则高和底面积都为定值,即三棱锥的体积为定值,故D正确;故选:B【点睛】本题主要考查了判断面面平行,线面垂直等,属于中档题.2、D【解析】
由等比数列的性质求得a1q4=16,a12q5=﹣32,通过解该方程求得它们的值,求首项和公比,根据等比数列的前n项和公式解答即可.【详解】设等比数列{an}的公比为q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,则,则,故选:D.【点睛】本题主要考查等比数列的前n项和,根据等比数列建立条件关系求出公比是解决本题的关键,属于基础题.3、B【解析】
计算的和,然后除以,得到“5阶幻方”的幻和.【详解】依题意“5阶幻方”的幻和为,故选B.【点睛】本小题主要考查合情推理与演绎推理,考查等差数列前项和公式,属于基础题.4、C【解析】
根据复数的乘法运算以及纯虚数的概念,可得结果.【详解】∵为纯虚数,∴且得,此时故选:C.【点睛】本题考查复数的概念与运算,属基础题.5、B【解析】
在上分别取点,使得,可知为平行四边形,从而可得到,即可得到答案.【详解】如下图,,在上分别取点,使得,则为平行四边形,故,故答案为B.【点睛】本题考查了平面向量的线性运算,考查了学生逻辑推理能力,属于基础题.6、B【解析】
用空间四边形对①进行判断;根据公理2对②进行判断;根据空间角的定义对③进行判断;根据空间直线位置关系对④进行判断.【详解】①中,空间四边形的四条线段不共面,故①错误.②中,由公理2知道,过不在同一条直线上的三点,有且只有一个平面,故②正确.③中,由空间角的定义知道,空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故③错误.④中,空间中,垂直于同一直线的两条直线可相交,可平行,可异面,故④错误.故选:B【点睛】本小题考查空间点,线,面的位置关系及其相关公理,定理及其推论的理解和认识;考查空间想象能力,推理论证能力,考查数形结合思想,化归与转化思想.7、D【解析】
由题意,本题符合几何概型,只要求出区间的长度以及使不等式成立的的范围区间长度,利用几何概型公式可得概率,即等差数列的公差,利用条件,求得,从而求得,解不等式求得结果.【详解】由题意,本题符合几何概型,区间长度为6,使得成立的的范围为,区间长度为2,故使得成立的概率为,又,,,令,则有,故的最小值为11,故选:D.【点睛】该题考查的是有关几何概型与等差数列的综合题,涉及到的知识点有长度型几何概型概率公式,等差数列的通项公式,属于基础题目.8、C【解析】
利用证得数列为常数列,并由此求得的通项公式.【详解】由,得,可得().相减得,则(),又由,,得,所以,所以为常数列,所以,故.故选:C【点睛】本小题考查数列的通项与前项和的关系等基础知识;考查运算求解能力,逻辑推理能力,应用意识.9、B【解析】
根据函数的奇偶性和单调性得到可行域,画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】奇函数是上的减函数,则,且,画出可行域和目标函数,,即,表示直线与轴截距的相反数,根据平移得到:当直线过点,即时,有最小值为.故选:.【点睛】本题考查了函数的单调性和奇偶性,线性规划问题,意在考查学生的综合应用能力,画出图像是解题的关键.10、A【解析】
由题意可得,即,代入双曲线的渐近线方程可得答案.【详解】依题意椭圆与双曲线即的焦点相同,可得:,即,∴,可得,双曲线的渐近线方程为:,故选:A.【点睛】本题考查椭圆和双曲线的方程和性质,考查渐近线方程的求法,考查方程思想和运算能力,属于基础题.11、C【解析】由题意可得双曲线的渐近线的方程为.∵为线段的中点,∴,则为等腰三角形.∴由双曲线的的渐近线的性质可得∴∴,即.∴双曲线的离心率为故选C.点睛:本题考查了椭圆和双曲线的定义和性质,考查了离心率的求解,同时涉及到椭圆的定义和双曲线的定义及三角形的三边的关系应用,对于求解曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).12、B【解析】
由,则输出为300,即可得出判断框的答案【详解】由,则输出的值为300,,故判断框中应填?故选:.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
法一:根据直角三角形的性质和勾股定理得,,,又由双曲线的定义得,将离心率表示成关于的式子,再令,则,令对函数求导研究函数在上单调性,可求得离心率的范围.法二:令,,,,,根据直角三角形的性质和勾股定理得,将离心率表示成关于角的三角函数,根据三角函数的恒等变化转化为关于的函数,可求得离心率的范围.【详解】法一:,,,,,,设,则,令,所以时,,在上单调递增,,,.法二:,,令,,,,,,,,,.故答案为:.【点睛】本题考查求双曲线的离心率的范围的问题,关键在于将已知条件转化为与双曲线的有关,从而将离心率表示关于某个量的函数,属于中档题.14、【解析】
作出不等式组对应的平面区域,利用目标函数的最小值为,确定出的值,进而确定出C点坐标,结合目标函数几何意义,从而求得结果.【详解】先做的区域如图可知在三角形ABC区域内,由得可知,直线的截距最大时,取得最小值,此时直线为,作出直线,交于A点,由图象可知,目标函数在该点取得最小值,所以直线也过A点,由,得,代入,得,所以点C的坐标为.等价于点与原点连线的斜率,所以当点为点C时,取得最小值,最小值为,故答案为:.【点睛】该题考查的是有关线性规划的问题,在解题的过程中,注意正确画出约束条件对应的可行域,根据最值求出参数,结合分式型目标函数的意义求得最优解,属于中档题目.15、【解析】
由题意,,则,得.由题意可设的方程为,,联立方程组,消去得,恒成立,,,则,点到直线的距离为,则,又,则,当且仅当即时取等号.故面积的取值范围是.16、9【解析】
用换中的n,得,作差可得,从而数列是等比数列,再由即可得到答案.【详解】由,得,两式相减,得,即;又,解得,所以数列为首项为-3、公比为3的等比数列,所以.故答案为:9.【点睛】本题考查已知与的关系求数列通项的问题,要注意n的范围,考查学生运算求解能力,是一道中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见详解;(2)【解析】
(1)求出函数的导函数,由在处取得极值1,可得且.解出,构造函数,分析其单调性,结合,即可得到的范围,命题得证;
(2)由分离参数,得到恒成立,构造函数,求导函数,再构造函数,进行二次求导.由知,则在上单调递增.根据零点存在定理可知有唯一零点,且.由此判断出时,单调递减,时,单调递增,则,即.由得,再次构造函数,求导分析单调性,从而得,即,最终求得,则.【详解】解:(1)由题知,∵函数在,处取得极值1,,且,,,令,则为增函数,,即成立.(2)不等式恒成立,即不等式恒成立,即恒成立,令,则令,则,,,在上单调递增,且,有唯一零点,且,当时,,,单调递减;当时,,,单调递增.,由整理得,令,则方程等价于而在上恒大于零,在上单调递增,.,∴实数的取值范围为.【点睛】本题考查了函数的极值,利用导函数判断函数的单调性,函数的零点存在定理,证明不等式,解决不等式恒成立问题.其中多次构造函数,是解题的关键,属于综合性很强的难题.18、(1),抛物线;(2)存在,.【解析】
(1)设,易得,化简即得;(2)利用导数几何意义可得,要使,只需.联立直线m与抛物线方程,利用根与系数的关系即可解决.【详解】(1)设,由题意,得,化简得,所以动圆圆心Q的轨迹方程为,它是以F为焦点,以直线l为准线的抛物线.(2)不妨设.因为,所以,从而直线PA的斜率为,解得,即,又,所以轴.要使,只需.设直线m的方程为,代入并整理,得.首先,,解得或.其次,设,,则,..故存在直线m,使得,此时直线m的斜率的取值范围为.【点睛】本题考查直线与抛物线位置关系的应用,涉及抛物线中的存在性问题,考查学生的计算能力,是一道中档题.19、(1)证明见解析,是,,,,;(2)【解析】
(1)根据是球的直径,则,又平面,得到,再由线面垂直的判定定理得到平面,,进而得到,再利用线面垂直的判定定理得到平面.(2)以A为原点,,,所在直线为x,y,z轴建立直角坐标系,设,由,解得,得到,从而得到,然后求得平面的一个法向量,代入公式求解.【详解】(1)因为是球的直径,则,又平面,∴,.∴平面,∴,∴平面.根据证明可知,四面体是鳖臑.它的每个面的直角分别是,,,.(2)如图,以A为原点,,,所在直线为x,y,z轴建立直角坐标系,则,,,,.M为中点,从而.所以,设,则.由,得.由得,即.所以.设平面的一个法向量为.由.取,,,得到.记与平面所成角为θ,则.所以直线与平面所成的角的正弦值为.【点睛】本题主要考查线面垂直的判定定理和线面角的向量求法,还考查了转化化归的思想和运算求解的能力,属于中档题.20、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年无人驾驶汽车项目资金申请报告代可行性研究报告
- 2024年度影视制作合同:电视剧集制作、发行及版权转让协议2篇
- 二零二四年度咨询服务合同标的和责任
- 2024年度市场推广合同:互联网营销推广合作协议
- 2024年溶剂油行业政策分析:溶剂油行业标准加强产品质量监督
- 二零二四年度商业代理的授权协议3篇
- 2024年度洛阳房屋租赁合同样本
- 2024年度城市轨道交通设备购置及维护合同3篇
- 二零二四年度智能语音识别技术研发及应用合作协议3篇
- 银行2月14日情人节活动策划方案
- 2024年度★电商平台入驻协议
- 中小学营养餐家长参与方案
- 《财务基础知识培训》课件
- 抖音带货主播小白培训
- 2024秋期河南开放大学本科《公司法律实务(本)》一平台无纸化考试(形考任务1至3+我要考试)试题及答案
- 国家开放大学《实-用管理基础》形考任务1-4参考答案
- 2024黑龙江省交通投资集团招聘38人高频难、易错点500题模拟试题附带答案详解
- 1.2 歌曲《落雨大》课件(13张内嵌音视频)
- 全国行业职业技能竞赛(电力交易员)考试题及答案
- 养生滋补炖品店策划方案
- 新版《铁道概论》考试复习试题库(含答案)
评论
0/150
提交评论