版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023届黑龙江省齐齐哈尔八中高三教学质量检测试题试卷(一)数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数,则()A. B. C. D.22.如图所示,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于,两点,且,则该椭圆的离心率是()A. B. C. D.3.已知不同直线、与不同平面、,且,,则下列说法中正确的是()A.若,则 B.若,则C.若,则 D.若,则4.已知集合,集合,则A. B.或C. D.5.若的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为()A.85 B.84 C.57 D.566.如图,正三棱柱各条棱的长度均相等,为的中点,分别是线段和线段的动点(含端点),且满足,当运动时,下列结论中不正确的是A.在内总存在与平面平行的线段B.平面平面C.三棱锥的体积为定值D.可能为直角三角形7.已知是边长为1的等边三角形,点,分别是边,的中点,连接并延长到点,使得,则的值为()A. B. C. D.8.已知,若则实数的取值范围是()A. B. C. D.9.已知函数.若存在实数,且,使得,则实数a的取值范围为()A. B. C. D.10.设则以线段为直径的圆的方程是()A. B.C. D.11.已知函数,则下列结论错误的是()A.函数的最小正周期为πB.函数的图象关于点对称C.函数在上单调递增D.函数的图象可由的图象向左平移个单位长度得到12.i是虚数单位,若,则乘积的值是()A.-15 B.-3 C.3 D.15二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的左右顶点为,以为直径作圆,为双曲线右支上不同于顶点的任一点,连接交圆于点,设直线的斜率分别为,若,则_____.14.已知函数,若恒成立,则的取值范围是___________.15.有以下四个命题:①在中,的充要条件是;②函数在区间上存在零点的充要条件是;③对于函数,若,则必不是奇函数;④函数与的图象关于直线对称.其中正确命题的序号为______.16.如图所示,点,B均在抛物线上,等腰直角的斜边为BC,点C在x轴的正半轴上,则点B的坐标是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线l的极坐标方程为,圆C的参数方程为(为参数).(1)请分别把直线l和圆C的方程化为直角坐标方程;(2)求直线l被圆截得的弦长.18.(12分)某调查机构对某校学生做了一个是否同意生“二孩”抽样调查,该调查机构从该校随机抽查了100名不同性别的学生,调查统计他们是同意父母生“二孩”还是反对父母生“二孩”,现已得知100人中同意父母生“二孩”占60%,统计情况如下表:同意不同意合计男生a5女生40d合计100(1)求a,d的值,根据以上数据,能否有97.5%的把握认为是否同意父母生“二孩”与性别有关?请说明理由;(2)将上述调查所得的频率视为概率,现在从所有学生中,采用随机抽样的方法抽取4位学生进行长期跟踪调查,记被抽取的4位学生中持“同意”态度的人数为X,求X的分布列及数学期望.附:0.150.1000.0500.0250.0102.0722.7063.8415.0246.63519.(12分)已知函数(,为自然对数的底数),.(1)若有两个零点,求实数的取值范围;(2)当时,对任意的恒成立,求实数的取值范围.20.(12分)设,函数.(1)当时,求在内的极值;(2)设函数,当有两个极值点时,总有,求实数的值.21.(12分)已知函数.(Ⅰ)解不等式;(Ⅱ)设其中为常数.若方程在上恰有两个不相等的实数根,求实数的取值范围.22.(10分)设椭圆:的左、右焦点分别为,,下顶点为,椭圆的离心率是,的面积是.(1)求椭圆的标准方程.(2)直线与椭圆交于,两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
根据复数模的性质即可求解.【详解】,,故选:C【点睛】本题主要考查了复数模的性质,属于容易题.2.A【解析】
联立直线方程与椭圆方程,解得和的坐标,然后利用向量垂直的坐标表示可得,由离心率定义可得结果.【详解】由,得,所以,.由题意知,所以,.因为,所以,所以.所以,所以,故选:A.【点睛】本题考查了直线与椭圆的交点,考查了向量垂直的坐标表示,考查了椭圆的离心率公式,属于基础题.3.C【解析】
根据空间中平行关系、垂直关系的相关判定和性质可依次判断各个选项得到结果.【详解】对于,若,则可能为平行或异面直线,错误;对于,若,则可能为平行、相交或异面直线,错误;对于,若,且,由面面垂直的判定定理可知,正确;对于,若,只有当垂直于的交线时才有,错误.故选:.【点睛】本题考查空间中线面关系、面面关系相关命题的辨析,关键是熟练掌握空间中的平行关系与垂直关系的相关命题.4.C【解析】
由可得,解得或,所以或,又,所以,故选C.5.A【解析】
先求,再确定展开式中的有理项,最后求系数之和.【详解】解:的展开式中二项式系数和为256故,要求展开式中的有理项,则则二项式展开式中有理项系数之和为:故选:A【点睛】考查二项式的二项式系数及展开式中有理项系数的确定,基础题.6.D【解析】
A项用平行于平面ABC的平面与平面MDN相交,则交线与平面ABC平行;B项利用线面垂直的判定定理;C项三棱锥与三棱锥体积相等,三棱锥的底面积是定值,高也是定值,则体积是定值;D项用反证法说明三角形DMN不可能是直角三角形.【详解】A项,用平行于平面ABC的平面截平面MND,则交线平行于平面ABC,故正确;B项,如图:当M、N分别在BB1、CC1上运动时,若满足BM=CN,则线段MN必过正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正确;C项,当M、N分别在BB1、CC1上运动时,△A1DM的面积不变,N到平面A1DM的距离不变,所以棱锥N-A1DM的体积不变,即三棱锥A1-DMN的体积为定值,故正确;D项,若△DMN为直角三角形,则必是以∠MDN为直角的直角三角形,但MN的最大值为BC1,而此时DM,DN的长大于BB1,所以△DMN不可能为直角三角形,故错误.故选D【点睛】本题考查了命题真假判断、棱柱的结构特征、空间想象力和思维能力,意在考查对线面、面面平行、垂直的判定和性质的应用,是中档题.7.D【解析】
设,,作为一个基底,表示向量,,,然后再用数量积公式求解.【详解】设,,所以,,,所以.故选:D【点睛】本题主要考查平面向量的基本运算,还考查了运算求解的能力,属于基础题.8.C【解析】
根据,得到有解,则,得,,得到,再根据,有,即,可化为,根据,则的解集包含求解,【详解】因为,所以有解,即有解,所以,得,,所以,又因为,所以,即,可化为,因为,所以的解集包含,所以或,解得,故选:C【点睛】本题主要考查一元二次不等式的解法及集合的关系的应用,还考查了运算求解的能力,属于中档题,9.D【解析】
首先对函数求导,利用导数的符号分析函数的单调性和函数的极值,根据题意,列出参数所满足的不等关系,求得结果.【详解】,令,得,.其单调性及极值情况如下:x0+0_0+极大值极小值若存在,使得,则(如图1)或(如图2).(图1)(图2)于是可得,故选:D.【点睛】该题考查的是有关根据函数值的关系求参数的取值范围的问题,涉及到的知识点有利用导数研究函数的单调性与极值,画出图象数形结合,属于较难题目.10.A【解析】
计算的中点坐标为,圆半径为,得到圆方程.【详解】的中点坐标为:,圆半径为,圆方程为.故选:.【点睛】本题考查了圆的标准方程,意在考查学生的计算能力.11.D【解析】
由可判断选项A;当时,可判断选项B;利用整体换元法可判断选项C;可判断选项D.【详解】由题知,最小正周期,所以A正确;当时,,所以B正确;当时,,所以C正确;由的图象向左平移个单位,得,所以D错误.故选:D.【点睛】本题考查余弦型函数的性质,涉及到周期性、对称性、单调性以及图象变换后的解析式等知识,是一道中档题.12.B【解析】,∴,选B.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
根据双曲线上的点的坐标关系得,交圆于点,所以,建立等式,两式作商即可得解.【详解】设,交圆于点,所以易知:即.故答案为:【点睛】此题考查根据双曲线上的点的坐标关系求解斜率关系,涉及双曲线中的部分定值结论,若能熟记常见二级结论,此题可以简化计算.14.【解析】
求导得到,讨论和两种情况,计算时,函数在上单调递减,故,不符合,排除,得到答案。【详解】因为,所以,因为,所以.当,即时,,则在上单调递增,从而,故符合题意;当,即时,因为在上单调递增,且,所以存在唯一的,使得.令,得,则在上单调递减,从而,故不符合题意.综上,的取值范围是.故答案为:.【点睛】本题考查了不等式恒成立问题,转化为函数的最值问题是解题的关键.15.①【解析】
由三角形的正弦定理和边角关系可判断①;由零点存在定理和二次函数的图象可判断②;由,结合奇函数的定义,可判断③;由函数图象对称的特点可判断④.【详解】解:①在中,,故①正确;②函数在区间上存在零点,比如在存在零点,但是,故②错误;③对于函数,若,满足,但可能为奇函数,故③错误;④函数与的图象,可令,即,即有和的图象关于直线对称,即对称,故④错误.故答案为:①.【点睛】本题主要考查函数的零点存在定理和对称性、奇偶性的判断,考查判断能力和推理能力,属于中档题.16.【解析】
设出两点的坐标,结合抛物线方程、两条直线垂直的条件以及两点间的距离公式列方程,解方程求得的坐标.【详解】设,由于在抛物线上,所以.由于三角形是等腰直角三角形,,所以.由得,化为,可得,所以,解得,则.所以.故答案为:【点睛】本题考查抛物线的方程和运用,考查方程思想和运算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1).x2+y2=1.(2)16【解析】
(1)直接利用极坐标方程和参数方程公式化简得到答案.(2)圆心到直线的距离为,故弦长为得到答案.【详解】(1),即,即,即.,故.(2)圆心到直线的距离为,故弦长为.【点睛】本题考查了极坐标方程和参数方程,圆的弦长,意在考查学生的计算能力和转化能力.18.(1),有97.5%的把握认为是否同意父母生“二孩”与“性别”有关;(2)详见解析.【解析】
(1)根据表格及同意父母生“二孩”占60%可求出,,根据公式计算结果即可确定有97.5%的把握认为是否同意父母生“二孩”与“性别”有关(2)由题意可知X服从二项分布,利用公式计算概率及期望即可.【详解】(1)因为100人中同意父母生“二孩”占60%,所以,文(2)由列联表可得而所以有97.5%的把握认为是否同意父母生“二孩”与“性别”有关(2)①由题知持“同意”态度的学生的频率为,即从学生中任意抽取到一名持“同意”态度的学生的概率为.由于总体容量很大,故X服从二项分布,即从而X的分布列为X01234X的数学期望为【点睛】本题主要考查了相关性检验、二项分布,属于中档题.19.(1);(2)【解析】
(1)将有两个零点转化为方程有两个相异实根,令求导,利用其单调性和极值求解;(2)将问题转化为对一切恒成立,令,求导,研究单调性,求出其最值即可得结果.【详解】(1)有两个零点关于的方程有两个相异实根由,知有两个零点有两个相异实根.令,则,由得:,由得:,在单调递增,在单调递减,又当时,,当时,当时,有两个零点时,实数的取值范围为;(2)当时,,原命题等价于对一切恒成立对一切恒成立.令令,,则在上单增又,,使即①当时,,当时,,即在递减,在递增,由①知函数在单调递增即,实数的取值范围为.【点睛】本题考查利用导数研究函数的单调性,极值,最值问题,考查学生转化能力和分析能力,是一道难度较大的题目.20.(1)极大值是,无极小值;(2)【解析】
(1)当时,可求得,令,利用导数可判断的单调性并得其零点,从而可得原函数的极值点及极大值;(2)表示出,并求得,由题意,得方程有两个不同的实根,,从而可得△及,由,得.则可化为对任意的恒成立,按照、、三种情况分类讨论,分离参数后转化为求函数的最值可解决;【详解】(1)当时,.令,则,显然在上单调递减,又因为,故时,总有,所以在上单调递减.由于,所以当时,;当时,.当变化时,的变化情况如下表:+-增极大减所以在上的极大值是,无极小值.(2)由于,则.由题意,方程有两个不等实根,则,解得,且,又,所以.由,,可得又.将其代入上式得:.整理得,即当时,不等式恒成立,即.当时,恒成立,即,令,易证是上的减函数.因此,当时,,故.当时,恒成立,即,因此,当时,所以.综上所述,.【点睛】本题考查利用导数求函数的最值、研究函数的极值等知识,考查分类讨论思想、转化思想,考查学生综合运用知识分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届高考政治一轮复习课后限时集训25文化的继承性与文化发展含解析新人教版
- 墙体彩绘施工合同幼儿园教育墙绘
- 《全科医学概论上》课件
- 重庆人文科技学院《药理学基础》2021-2022学年第一学期期末试卷
- 重庆人文科技学院《水墨实验》2023-2024学年第一学期期末试卷
- 重庆人文科技学院《广播播音与主持实训》2021-2022学年第一学期期末试卷
- 2024北京十二中八年级(上)期中历史(教师版)
- 安全员(兼职)岗位职责
- 重庆三峡学院《钢结构原理》2022-2023学年第一学期期末试卷
- Web前端及微信小程序开发工程师岗位职责职位要求
- 信息技术与高中英语教学融合的途径
- 组织行为学(山东联盟-青岛理工大学)智慧树知到期末考试答案2024年
- 复习一元一次方程省公开课金奖全国赛课一等奖微课获奖课件
- 《电力建设施工技术规范 第2部分:锅炉机组》DLT 5190.2
- MOOC 管理咨询-暨南大学 中国大学慕课答案
- 供水管网抢修管理课件
- (2024年)介入诊疗应急预案
- 25道医院重症医学科医生岗位高频面试问题附考察点及参考回答
- 施工日志及楼工程施工日志
- 改变世界的化学智慧树知到期末考试答案2024年
- 形容词比较级练习题
评论
0/150
提交评论