2025届新课标全国卷高考数学押题试卷含解析_第1页
2025届新课标全国卷高考数学押题试卷含解析_第2页
2025届新课标全国卷高考数学押题试卷含解析_第3页
2025届新课标全国卷高考数学押题试卷含解析_第4页
2025届新课标全国卷高考数学押题试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届新课标全国卷高考数学押题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.ΔABC中,如果lgcosA=lgsinA.等边三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形2.的展开式中的常数项为()A.-60 B.240 C.-80 D.1803.在平面直角坐标系中,若不等式组所表示的平面区域内存在点,使不等式成立,则实数的取值范围为()A. B. C. D.4.已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为()A. B. C. D.5.已知实数满足,则的最小值为()A. B. C. D.6.函数在的图象大致为()A. B.C. D.7.已知,,,,.若实数,满足不等式组,则目标函数()A.有最大值,无最小值 B.有最大值,有最小值C.无最大值,有最小值 D.无最大值,无最小值8.若复数为虚数单位在复平面内所对应的点在虚轴上,则实数a为()A. B.2 C. D.9.已知复数,,则()A. B. C. D.10.已知双曲线与双曲线没有公共点,则双曲线的离心率的取值范围是()A. B. C. D.11.已知函数,若,,,则a,b,c的大小关系是()A. B. C. D.12.已知定义在上函数的图象关于原点对称,且,若,则()A.0 B.1 C.673 D.674二、填空题:本题共4小题,每小题5分,共20分。13.函数的最小正周期是_______________,单调递增区间是__________.14.已知抛物线的焦点为,过点且斜率为1的直线与抛物线交于点,以线段为直径的圆上存在点,使得以为直径的圆过点,则实数的取值范围为________.15.已知向量,,则______.16.已知数列的前项和为,,,,则满足的正整数的所有取值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求不等式的解集;(2)若函数的最大值为,且,求的最小值.18.(12分)2019年6月,国内的运营牌照开始发放.从到,我们国家的移动通信业务用了不到20年的时间,完成了技术上的飞跃,跻身世界先进水平.为了解高校学生对的消费意愿,2019年8月,从某地在校大学生中随机抽取了1000人进行调查,样本中各类用户分布情况如下:用户分类预计升级到的时段人数早期体验用户2019年8月至2019年12月270人中期跟随用户2020年1月至2021年12月530人后期用户2022年1月及以后200人我们将大学生升级时间的早晚与大学生愿意为套餐支付更多的费用作比较,可得出下图的关系(例如早期体验用户中愿意为套餐多支付5元的人数占所有早期体验用户的).(1)从该地高校大学生中随机抽取1人,估计该学生愿意在2021年或2021年之前升级到的概率;(2)从样本的早期体验用户和中期跟随用户中各随机抽取1人,以表示这2人中愿意为升级多支付10元或10元以上的人数,求的分布列和数学期望;(3)2019年底,从这1000人的样本中随机抽取3人,这三位学生都已签约套餐,能否认为样本中早期体验用户的人数有变化?说明理由.19.(12分)已知函数与的图象关于直线对称.(为自然对数的底数)(1)若的图象在点处的切线经过点,求的值;(2)若不等式恒成立,求正整数的最小值.20.(12分)已知函数f(x)=ex-x2-kx(其中e为自然对数的底,k为常数)有一个极大值点和一个极小值点.(1)求实数k的取值范围;(2)证明:f(x)的极大值不小于1.21.(12分)在直角坐标系中,直线l过点,且倾斜角为,以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.求直线l的参数方程和曲线C的直角坐标方程,并判断曲线C是什么曲线;设直线l与曲线C相交与M,N两点,当,求的值.22.(10分)某景点上山共有级台阶,寓意长长久久.甲上台阶时,可以一步走一个台阶,也可以一步走两个台阶,若甲每步上一个台阶的概率为,每步上两个台阶的概率为.为了简便描述问题,我们约定,甲从级台阶开始向上走,一步走一个台阶记分,一步走两个台阶记分,记甲登上第个台阶的概率为,其中,且.(1)若甲走步时所得分数为,求的分布列和数学期望;(2)证明:数列是等比数列;(3)求甲在登山过程中,恰好登上第级台阶的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

化简得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,结合0<A<π,可求A=π【详解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故选:B【点睛】本题主要考查了对数的运算性质的应用,两角差的正弦公式的应用,解题的关键是灵活利用基本公式,属于基础题.2、D【解析】

求的展开式中的常数项,可转化为求展开式中的常数项和项,再求和即可得出答案.【详解】由题意,中常数项为,中项为,所以的展开式中的常数项为:.故选:D【点睛】本题主要考查二项式定理的应用和二项式展开式的通项公式,考查学生计算能力,属于基础题.3、B【解析】

依据线性约束条件画出可行域,目标函数恒过,再分别讨论的正负进一步确定目标函数与可行域的基本关系,即可求解【详解】作出不等式对应的平面区域,如图所示:其中,直线过定点,当时,不等式表示直线及其左边的区域,不满足题意;当时,直线的斜率,不等式表示直线下方的区域,不满足题意;当时,直线的斜率,不等式表示直线上方的区域,要使不等式组所表示的平面区域内存在点,使不等式成立,只需直线的斜率,解得.综上可得实数的取值范围为,故选:B.【点睛】本题考查由目标函数有解求解参数取值范围问题,分类讨论与数形结合思想,属于中档题4、B【解析】试题分析:由题意得,,所以,,所求双曲线方程为.考点:双曲线方程.5、A【解析】

所求的分母特征,利用变形构造,再等价变形,利用基本不等式求最值.【详解】解:因为满足,则,当且仅当时取等号,故选:.【点睛】本题考查通过拼凑法利用基本不等式求最值.拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键.(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标(3)拆项、添项应注意检验利用基本不等式的前提.6、B【解析】

先考虑奇偶性,再考虑特殊值,用排除法即可得到正确答案.【详解】是奇函数,排除C,D;,排除A.故选:B.【点睛】本题考查函数图象的判断,属于常考题.7、B【解析】

判断直线与纵轴交点的位置,画出可行解域,即可判断出目标函数的最值情况.【详解】由,,所以可得.,所以由,因此该直线在纵轴的截距为正,但是斜率有两种可能,因此可行解域如下图所示:由此可以判断该目标函数一定有最大值和最小值.故选:B【点睛】本题考查了目标函数最值是否存在问题,考查了数形结合思想,考查了不等式的性质应用.8、D【解析】

利用复数代数形式的乘除运算化简,再由实部为求得值.【详解】解:在复平面内所对应的点在虚轴上,,即.故选D.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.9、B【解析】分析:利用的恒等式,将分子、分母同时乘以,化简整理得详解:,故选B点睛:复数问题是高考数学中的常考问题,属于得分题,主要考查的方面有:复数的分类、复数的几何意义、复数的模、共轭复数以及复数的乘除运算,在运算时注意符号的正、负问题.10、C【解析】

先求得的渐近线方程,根据没有公共点,判断出渐近线斜率的取值范围,由此求得离心率的取值范围.【详解】双曲线的渐近线方程为,由于双曲线与双曲线没有公共点,所以双曲线的渐近线的斜率,所以双曲线的离心率.故选:C【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的取值范围的求法,属于基础题.11、D【解析】

根据题意,求出函数的导数,由函数的导数与函数单调性的关系分析可得在上为增函数,又由,分析可得答案.【详解】解:根据题意,函数,其导数函数,则有在上恒成立,则在上为增函数;又由,则;故选:.【点睛】本题考查函数的导数与函数单调性的关系,涉及函数单调性的性质,属于基础题.12、B【解析】

由题知为奇函数,且可得函数的周期为3,分别求出知函数在一个周期内的和是0,利用函数周期性对所求式子进行化简可得.【详解】因为为奇函数,故;因为,故,可知函数的周期为3;在中,令,故,故函数在一个周期内的函数值和为0,故.故选:B.【点睛】本题考查函数奇偶性与周期性综合问题.其解题思路:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.二、填空题:本题共4小题,每小题5分,共20分。13、,,【解析】

化简函数的解析式,利用余弦函数的图象和性质求解即可.【详解】函数,最小正周期,令,,可得,,所以单调递增区间是,,.故答案为:,,,.【点睛】本题主要考查了二倍角的公式的应用,余弦函数的图象与性质,属于中档题.14、【解析】

由题意求出以线段AB为直径的圆E的方程,且点D恒在圆E外,即圆E上存在点,使得,则当与圆E相切时,此时,由此列出不等式,即可求解。【详解】由题意可得,直线的方程为,联立方程组,可得,设,则,,设,则,,又,所以圆是以为圆心,4为半径的圆,所以点恒在圆外.圆上存在点,使得以为直径的圆过点,即圆上存在点,使得,设过点的两直线分别切圆于点,要满足题意,则,所以,整理得,解得,故实数的取值范围为【点睛】本题主要考查了直线与抛物线位置关系的应用,以及直线与圆的位置关系的应用,其中解答中准确求得圆E的方程,把圆上存在点,使得以为直径的圆过点,转化为圆上存在点,使得是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题。15、【解析】

求出,然后由模的平方转化为向量的平方,利用数量积的运算计算.【详解】由题意得,.,.,,.故答案为:.【点睛】本题考查求向量的模,掌握数量积的定义与运算律是解题基础.本题关键是用数量积的定义把模的运算转化为数量积的运算.16、20,21【解析】

由题意知数列奇数项和偶数项分别为等差数列和等比数列,则根据为奇数和为偶数分别算出求和公式,代入数值检验即可.【详解】解:由题意知数列的奇数项构成公差为的等差数列,偶数项构成公比为的等比数列,则;.当时,,.当时,,.由此可知,满足的正整数的所有取值为20,21.故答案为:20,21【点睛】本题考查等差数列与等比数列通项与求和公式,是综合题,分清奇数项和偶数项是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)化简得到,分类解不等式得到答案.(2)的最大值,,利用均值不等式计算得到答案.【详解】(1)因为,故或或解得或,故不等式的解集为.(2)画出函数图像,根据图像可知的最大值.因为,所以,当且仅当时,等号成立,故的最小值是3.【点睛】本题考查了解不等式,均值不等式求最值,意在考查学生的计算能力和转化能力.18、(1)(2)详见解析(3)事件虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没有发生变化,详见解析【解析】

(1)由从高校大学生中随机抽取1人,该学生在2021年或2021年之前升级到,结合古典摡型的概率计算公式,即可求解;(2)由题意的所有可能值为,利用相互独立事件的概率计算公式,分别求得相应的概率,得到随机变量的分布列,利用期望的公式,即可求解.(3)设事件为“从这1000人的样本中随机抽取3人,这三位学生都已签约套餐”,得到七概率为,即可得到结论.【详解】(1)由题意可知,从高校大学生中随机抽取1人,该学生在2021年或2021年之前升级到的概率估计为样本中早期体验用户和中期跟随用户的频率,即.(2)由题意的所有可能值为,记事件为“从早期体验用户中随机抽取1人,该学生愿意为升级多支付10元或10元以上”,事件为“从中期跟随用户中随机抽取1人,该学生愿意为升级多支付10元或10元以上”,由题意可知,事件,相互独立,且,,所以,,,所以的分布列为0120.180.490.33故的数学期望.(3)设事件为“从这1000人的样本中随机抽取3人,这三位学生都已签约套餐”,那么.回答一:事件虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没有发生变化.回答二:事件发生概率小,所以可以认为早期体验用户人数增加.【点睛】本题主要考查了离散型随机变量的分布列,数学期望的求解及应用,对于求离散型随机变量概率分布列问题首先要清楚离散型随机变量的可能取值,计算得出概率,列出离散型随机变量概率分布列,最后按照数学期望公式计算出数学期望,其中列出离散型随机变量概率分布列及计算数学期望是理科高考数学必考问题.19、(1)e;(2)2.【解析】

(1)根据反函数的性质,得出,再利用导数的几何意义,求出曲线在点处的切线为,构造函数,利用导数求出单调性,即可得出的值;(2)设,求导,求出的单调性,从而得出最大值为,结合恒成立的性质,得出正整数的最小值.【详解】(1)根据题意,与的图象关于直线对称,所以函数的图象与互为反函数,则,,设点,,又,当时,,曲线在点处的切线为,即,代入点,得,即,构造函数,当时,,当时,,且,当时,单调递增,而,故存在唯一的实数根.(2)由于不等式恒成立,可设,所以,令,得.所以当时,;当时,,因此函数在是增函数,在是减函数.故函数的最大值为.令,因为,,又因为在是减函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论