版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
揭阳市2025届高三第三次测评数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知定点,,是圆上的任意一点,点关于点的对称点为,线段的垂直平分线与直线相交于点,则点的轨迹是()A.椭圆 B.双曲线 C.抛物线 D.圆2.已知是边长为1的等边三角形,点,分别是边,的中点,连接并延长到点,使得,则的值为()A. B. C. D.3.已知函数在上都存在导函数,对于任意的实数都有,当时,,若,则实数的取值范围是()A. B. C. D.4.设,则(
)A.10 B.11 C.12 D.135.已知平面,,直线满足,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分也不必要条件6.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,它的终边过点,则的值为()A. B. C. D.7.方程的实数根叫作函数的“新驻点”,如果函数的“新驻点”为,那么满足()A. B. C. D.8.定义在上的偶函数,对,,且,有成立,已知,,,则,,的大小关系为()A. B. C. D.9.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线恰好是四叶玫瑰线.给出下列结论:①曲线C经过5个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到坐标原点O的距离都不超过2;③曲线C围成区域的面积大于;④方程表示的曲线C在第二象限和第四象限其中正确结论的序号是()A.①③ B.②④ C.①②③ D.②③④10.直线l过抛物线的焦点且与抛物线交于A,B两点,则的最小值是A.10 B.9 C.8 D.711.不等式组表示的平面区域为,则()A., B.,C., D.,12.某几何体的三视图如图所示,则该几何体的最长棱的长为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量=(-4,3),=(6,m),且,则m=__________.14.已知三棱锥的四个顶点都在球O的球面上,,,,,E,F分别为,的中点,,则球O的体积为______.15.某中学高一年级有学生1200人,高二年级有学生900人,高三年级有学生1500人,现按年级用分层抽样的方法从这三个年级的学生中抽取一个容量为720的样本进行某项研究,则应从高三年级学生中抽取_____人.16.设,则_____,(的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)中国古建筑中的窗饰是艺术和技术的统一体,给人于美的享受.如图(1)为一花窗;图(2)所示是一扇窗中的一格,呈长方形,长30cm,宽26cm,其内部窗芯(不含长方形边框)用一种条形木料做成,由两个菱形和六根支条构成,整个窗芯关于长方形边框的两条对称轴成轴对称.设菱形的两条对角线长分别为xcm和ycm,窗芯所需条形木料的长度之和为L.(1)试用x,y表示L;(2)如果要求六根支条的长度均不小于2cm,每个菱形的面积为130cm2,那么做这样一个窗芯至少需要多长的条形木料(不计榫卯及其它损耗)?18.(12分)在边长为的正方形,分别为的中点,分别为的中点,现沿折叠,使三点重合,构成一个三棱锥.(1)判别与平面的位置关系,并给出证明;(2)求多面体的体积.19.(12分)已知数列,其前项和为,满足,,其中,,,.⑴若,,(),求证:数列是等比数列;⑵若数列是等比数列,求,的值;⑶若,且,求证:数列是等差数列.20.(12分)的内角A,B,C的对边分别为a,b,c,已知,.求C;若,求,的面积21.(12分)已知椭圆过点,设椭圆的上顶点为,右顶点和右焦点分别为,,且.(1)求椭圆的标准方程;(2)设直线交椭圆于,两点,设直线与直线的斜率分别为,,若,试判断直线是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.22.(10分)已知函数.⑴当时,求函数的极值;⑵若存在与函数,的图象都相切的直线,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据线段垂直平分线的性质,结合三角形中位线定理、圆锥曲线和圆的定义进行判断即可.【详解】因为线段的垂直平分线与直线相交于点,如下图所示:所以有,而是中点,连接,故,因此当在如下图所示位置时有,所以有,而是中点,连接,故,因此,综上所述:有,所以点的轨迹是双曲线.故选:B【点睛】本题考查了双曲线的定义,考查了数学运算能力和推理论证能力,考查了分类讨论思想.2、D【解析】
设,,作为一个基底,表示向量,,,然后再用数量积公式求解.【详解】设,,所以,,,所以.故选:D【点睛】本题主要考查平面向量的基本运算,还考查了运算求解的能力,属于基础题.3、B【解析】
先构造函数,再利用函数奇偶性与单调性化简不等式,解得结果.【详解】令,则当时,,又,所以为偶函数,从而等价于,因此选B.【点睛】本题考查利用函数奇偶性与单调性求解不等式,考查综合分析求解能力,属中档题.4、B【解析】
根据题中给出的分段函数,只要将问题转化为求x≥10内的函数值,代入即可求出其值.【详解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故选:B.【点睛】本题主要考查了分段函数中求函数的值,属于基础题.5、A【解析】
,是相交平面,直线平面,则“”“”,反之,直线满足,则或//或平面,即可判断出结论.【详解】解:已知直线平面,则“”“”,反之,直线满足,则或//或平面,“”是“”的充分不必要条件.故选:A.【点睛】本题考查了线面和面面垂直的判定与性质定理、简易逻辑的判定方法,考查了推理能力与计算能力.6、B【解析】
根据三角函数定义得到,故,再利用和差公式得到答案.【详解】∵角的终边过点,∴,.∴.故选:.【点睛】本题考查了三角函数定义,和差公式,意在考查学生的计算能力.7、D【解析】
由题设中所给的定义,方程的实数根叫做函数的“新驻点”,根据零点存在定理即可求出的大致范围【详解】解:由题意方程的实数根叫做函数的“新驻点”,对于函数,由于,,设,该函数在为增函数,,,在上有零点,故函数的“新驻点”为,那么故选:.【点睛】本题是一个新定义的题,理解定义,分别建立方程解出存在范围是解题的关键,本题考查了推理判断的能力,属于基础题..8、A【解析】
根据偶函数的性质和单调性即可判断.【详解】解:对,,且,有在上递增因为定义在上的偶函数所以在上递减又因为,,所以故选:A【点睛】考查偶函数的性质以及单调性的应用,基础题.9、B【解析】
利用基本不等式得,可判断②;和联立解得可判断①③;由图可判断④.【详解】,解得(当且仅当时取等号),则②正确;将和联立,解得,即圆与曲线C相切于点,,,,则①和③都错误;由,得④正确.故选:B.【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.10、B【解析】
根据抛物线中过焦点的两段线段关系,可得;再由基本不等式可求得的最小值.【详解】由抛物线标准方程可知p=2因为直线l过抛物线的焦点,由过抛物线焦点的弦的性质可知所以因为为线段长度,都大于0,由基本不等式可知,此时所以选B【点睛】本题考查了抛物线的基本性质及其简单应用,基本不等式的用法,属于中档题.11、D【解析】
根据题意,分析不等式组的几何意义,可得其表示的平面区域,设,分析的几何意义,可得的最小值,据此分析选项即可得答案.【详解】解:根据题意,不等式组其表示的平面区域如图所示,其中,,
设,则,的几何意义为直线在轴上的截距的2倍,
由图可得:当过点时,直线在轴上的截距最大,即,当过点原点时,直线在轴上的截距最小,即,故AB错误;
设,则的几何意义为点与点连线的斜率,由图可得最大可到无穷大,最小可到无穷小,故C错误,D正确;故选:D.【点睛】本题考查本题考查二元一次不等式的性质以及应用,关键是对目标函数几何意义的认识,属于基础题.12、D【解析】
先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度.【详解】根据三视图可知,几何体是一个四棱锥,如图所示:由三视图知:,所以,所以,所以该几何体的最长棱的长为故选:D【点睛】本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、8.【解析】
利用转化得到加以计算,得到.【详解】向量则.【点睛】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题.14、【解析】
可证,则为的外心,又则平面即可求出,的值,再由勾股定理求出外接球的半径,最后根据体积公式计算可得.【详解】解:,,,因为为的中点,所以为的外心,因为,所以点在内的投影为的外心,所以平面,平面,所以,所以,又球心在上,设,则,所以,所以球O体积,.故答案为:【点睛】本题考查多面体外接球体积的求法,考查空间想象能力与思维能力,考查计算能力,属于中档题.15、1.【解析】
先求得高三学生占的比例,再利用分层抽样的定义和方法,即可求解.【详解】由题意,高三学生占的比例为,所以应从高三年级学生中抽取的人数为.【点睛】本题主要考查了分层抽样的定义和方法,其中解答中熟记分层抽样的定义和抽取的方法是解答的关键,着重考查了运算与求解能力,属于基础题.16、7201【解析】
利用二项展开式的通式可求出;令中的,得两个式子,代入可得结果.【详解】利用二项式系数公式,,故,,故(=,故答案为:720;1.【点睛】本题考查二项展开式的通项公式的应用,考查赋值法,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】试题分析:(1)由条件可先求水平方向每根支条长,竖直方向每根支条长为,因此所需木料的长度之和L=(2)先确定范围由可得,再由面积为130cm2,得,转化为一元函数,令,则在上为增函数,解得L有最小值.试题解析:(1)由题意,水平方向每根支条长为cm,竖直方向每根支条长为cm,菱形的边长为cm.从而,所需木料的长度之和L=cm.(2)由题意,,即,又由可得.所以.令,其导函数在上恒成立,故在上单调递减,所以可得.则=.因为函数和在上均为增函数,所以在上为增函数,故当,即时L有最小值.答:做这样一个窗芯至少需要cm长的条形木料.考点:函数应用题18、(1)平行,证明见解析;(2).【解析】
(1)由题意及图形的翻折规律可知应是的一条中位线,利用线面平行的判定定理即可求证;(2)利用条件及线面垂直的判定定理可知,,则平面,在利用锥体的体积公式即可.【详解】(1)证明:因翻折后、、重合,∴应是的一条中位线,∴,∵平面,平面,∴平面;(2)解:∵,,∴面且,,,又,.【点睛】本题主要考查线面平行的判定定理,线面垂直的判定定理及锥体的体积公式,属于基础题.19、(1)见解析(2)(3)见解析【解析】试题分析:(1)(),所以,故数列是等比数列;(2)利用特殊值法,得,故;(3)得,所以,得,可证数列是等差数列.试题解析:(1)证明:若,则当(),所以,即,所以,又由,,得,,即,所以,故数列是等比数列.(2)若是等比数列,设其公比为(),当时,,即,得,①当时,,即,得,②当时,,即,得,③②①,得,③②,得,解得.代入①式,得.此时(),所以,是公比为1的等比数列,故.(3)证明:若,由,得,又,解得.由,,,,代入得,所以,,成等差数列,由,得,两式相减得:即所以相减得:所以所以,因为,所以,即数列是等差数列.20、(1).(2).【解析】
由已知利用正弦定理,同角三角函数基本关系式可求,结合范围,可求,由已知利用二倍角的余弦函数公式可得,结合范围,可求A,根据三角形的内角和定理即可解得C的值.由及正弦定理可得b的值,根据两角和的正弦函数公式可求sinC的值,进而根据三角形的面积公式即可求解.【详解】由已知可得,又由正弦定理,可得,即,,,,即,又,,或舍去,可得,.,,,由正弦定理,可得,,.【点睛】本题主要考查了正弦定理,同角三角函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024全新铝合金门窗供货合同范本下载
- 《关于课堂教学点评》课件
- 2024年度演艺经纪合同纠纷
- 《钢结构设计规范》课件
- 04版智能家居系统研发与销售合同
- 2024年度网络安全服务合同:某企业聘请专业公司保护信息系统3篇
- 2024年度售后服务合同:汽车4S店售后服务合同2篇
- 《宝洁公司战略分析》课件
- 《铝合金感应加热炉》课件
- 2024年度墙板生产设备采购合同3篇
- 劳动合同订立、履行、解除与终止2
- 招商总监面试题目
- 自然保护区学智慧树知到答案章节测试2023年东北林业大学
- 中国周边安全环境课件
- JBL音响系列产品参数
- 全过程工程咨询服务大纲
- 撬装式加油站安全操作规程
- q gw2sjss.65金风风力发电机组防腐技术rna部分归档版
- 业主警告物业管理公司的致物业管理公司告知函
- 料场施工方案
- 学习休闲农业与乡村旅游的心得认识
评论
0/150
提交评论