2025届湖北武汉武昌区武汉大学附属中学高考数学倒计时模拟卷含解析_第1页
2025届湖北武汉武昌区武汉大学附属中学高考数学倒计时模拟卷含解析_第2页
2025届湖北武汉武昌区武汉大学附属中学高考数学倒计时模拟卷含解析_第3页
2025届湖北武汉武昌区武汉大学附属中学高考数学倒计时模拟卷含解析_第4页
2025届湖北武汉武昌区武汉大学附属中学高考数学倒计时模拟卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北武汉武昌区武汉大学附属中学高考数学倒计时模拟卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.网络是一种先进的高频传输技术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精确到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月2.已知函数,若,则的取值范围是()A. B. C. D.3.集合,,则()A. B. C. D.4.已知变量的几组取值如下表:12347若与线性相关,且,则实数()A. B. C. D.5.已知向量,则向量在向量方向上的投影为()A. B. C. D.6.关于的不等式的解集是,则关于的不等式的解集是()A. B.C. D.7.已知复数,若,则的值为()A.1 B. C. D.8.要得到函数的图像,只需把函数的图像()A.向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位9.已知直线:与椭圆交于、两点,与圆:交于、两点.若存在,使得,则椭圆的离心率的取值范围为()A. B. C. D.10.已知集合,集合,则()A. B. C. D.11.点在所在的平面内,,,,,且,则()A. B. C. D.12.数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知实数a,b,c满足,则的最小值是______.14.三对父子去参加亲子活动,坐在如图所示的6个位置上,有且仅有一对父子是相邻而坐的坐法有________种(比如:B与D、B与C是相邻的,A与D、C与D是不相邻的).15.(5分)在长方体中,已知棱长,体对角线,两异面直线与所成的角为,则该长方体的表面积是____________.16.如图,己知半圆的直径,点是弦(包含端点,)上的动点,点在弧上.若是等边三角形,且满足,则的最小值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数,,其中,为正实数.(1)若的图象总在函数的图象的下方,求实数的取值范围;(2)设,证明:对任意,都有.18.(12分)如图,四棱锥中,底面,,点在线段上,且.(1)求证:平面;(2)若,,,,求二面角的正弦值.19.(12分)已知函数.(1)若曲线的切线方程为,求实数的值;(2)若函数在区间上有两个零点,求实数的取值范围.20.(12分)已知椭圆:的离心率为,左、右顶点分别为、,过左焦点的直线交椭圆于、两点(异于、两点),当直线垂直于轴时,四边形的面积为1.(1)求椭圆的方程;(2)设直线、的交点为;试问的横坐标是否为定值?若是,求出定值;若不是,请说明理由.21.(12分)已知函数.(1)讨论函数f(x)的极值点的个数;(2)若f(x)有两个极值点证明.22.(10分)在直角坐标系中,圆C的参数方程(为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是,射线与圆C的交点为O、P,与直线l的交点为Q,求线段的长.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

根据图形,计算出,然后解不等式即可.【详解】解:,点在直线上,令因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C【点睛】考查如何确定线性回归直线中的系数以及线性回归方程的实际应用,基础题.2、B【解析】

对分类讨论,代入解析式求出,解不等式,即可求解.【详解】函数,由得或解得.故选:B.【点睛】本题考查利用分段函数性质解不等式,属于基础题.3、A【解析】

计算,再计算交集得到答案.【详解】,,故.故选:.【点睛】本题考查了交集运算,属于简单题.4、B【解析】

求出,把坐标代入方程可求得.【详解】据题意,得,所以,所以.故选:B.【点睛】本题考查线性回归直线方程,由性质线性回归直线一定过中心点可计算参数值.5、A【解析】

投影即为,利用数量积运算即可得到结论.【详解】设向量与向量的夹角为,由题意,得,,所以,向量在向量方向上的投影为.故选:A.【点睛】本题主要考察了向量的数量积运算,难度不大,属于基础题.6、A【解析】

由的解集,可知及,进而可求出方程的解,从而可求出的解集.【详解】由的解集为,可知且,令,解得,,因为,所以的解集为,故选:A.【点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.7、D【解析】由复数模的定义可得:,求解关于实数的方程可得:.本题选择D选项.8、A【解析】

运用辅助角公式将两个函数公式进行变形得以及,按四个选项分别对变形,整理后与对比,从而可选出正确答案.【详解】解:.对于A:可得.故选:A.【点睛】本题考查了三角函数图像平移变换,考查了辅助角公式.本题的易错点有两个,一个是混淆了已知函数和目标函数;二是在平移时,忘记乘了自变量前的系数.9、A【解析】

由题意可知直线过定点即为圆心,由此得到坐标的关系,再根据点差法得到直线的斜率与坐标的关系,由此化简并求解出离心率的取值范围.【详解】设,且线过定点即为的圆心,因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以.故选:A.【点睛】本题考查椭圆与圆的综合应用,着重考查了椭圆离心率求解以及点差法的运用,难度一般.通过运用点差法达到“设而不求”的目的,大大简化运算.10、C【解析】

求出集合的等价条件,利用交集的定义进行求解即可.【详解】解:∵,,∴,故选:C.【点睛】本题主要考查了对数的定义域与指数不等式的求解以及集合的基本运算,属于基础题.11、D【解析】

确定点为外心,代入化简得到,,再根据计算得到答案.【详解】由可知,点为外心,则,,又,所以①因为,②联立方程①②可得,,,因为,所以,即.故选:【点睛】本题考查了向量模长的计算,意在考查学生的计算能力.12、D【解析】

利用等差数列通项公式推导出λ,由d∈[1,2],能求出实数λ取最大值.【详解】∵数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是减函数,∴d=1时,实数λ取最大值为λ.故选D.【点睛】本题考查实数值的最大值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先分离出,应用基本不等式转化为关于c的二次函数,进而求出最小值.【详解】解:若取最小值,则异号,,根据题意得:,又由,即有,则,即的最小值为,故答案为:【点睛】本题考查了基本不等式以及二次函数配方求最值,属于中档题.14、192【解析】

根据题意,分步进行分析:①,在三对父子中任选1对,安排在相邻的位置上,②,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,由分步计数原理计算可得答案.【详解】根据题意,分步进行分析:①,在三对父子中任选1对,有3种选法,由图可得相邻的位置有4种情况,将选出的1对父子安排在相邻的位置,有种安排方法;②,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,有种安排方法,则有且仅有一对父子是相邻而坐的坐法种;故答案为:【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.15、10【解析】

作出长方体如图所示,由于,则就是异面直线与所成的角,且,在等腰直角三角形中,由,得,又,则,从而长方体的表面积为.16、1【解析】

建系,设,表示出点坐标,则,根据的范围得出答案.【详解】解:以为原点建立平面坐标系如图所示:则,,,,设,则,,,,,,,显然当取得最大值4时,取得最小值1.故答案为:1.【点睛】本题考查了平面向量的数量积运算,坐标运算,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】

(1)据题意可得在区间上恒成立,利用导数讨论函数的单调性,从而求出满足不等式的的取值范围;(2)不等式整理为,由(1)可知当时,,利用导数判断函数的单调性从而证明在区间上成立,从而证明对任意,都有.【详解】(1)解:因为函数的图象恒在的图象的下方,所以在区间上恒成立.设,其中,所以,其中,.①当,即时,,所以函数在上单调递增,,故成立,满足题意.②当,即时,设,则图象的对称轴,,,所以在上存在唯一实根,设为,则,,,所以在上单调递减,此时,不合题意.综上可得,实数的取值范围是.(2)证明:由题意得,因为当时,,,所以.令,则,所以在上单调递增,,即,所以,从而.由(1)知当时,在上恒成立,整理得.令,则要证,只需证.因为,所以在上单调递增,所以,即在上恒成立.综上可得,对任意,都有成立.【点睛】本题考查导数在研究函数中的作用,利用导数判断函数单调性与求函数最值,利用导数证明不等式,属于难题.18、(1)证明见解析(2)【解析】

(1)要证明平面,只需证明,,即可求得答案;(2)先根据已知证明四边形为矩形,以为原点,为轴,为轴,为轴,建立坐标系,求得平面的法向量为,平面的法向量,设二面角的平面角为,,即可求得答案.【详解】(1)平面,平面,.,,.又,平面.(2)由(1)可知.在中,,..又,,四边形为矩形.以为原点,为轴,为轴,为轴,建立坐标系,如图:则:,,,,:,设平面的法向量为,即,令,则,由题平面,即平面的法向量为由二面角的平面角为锐角,设二面角的平面角为即二面角的正弦值为:.【点睛】本题主要考查了求证线面垂直和向量法求二面角,解题关键是掌握线面垂直判断定理和向量法求二面角的方法,考查了分析能力和计算能力,属于中档题.19、(1);(2)或【解析】

(1)根据解析式求得导函数,设切点坐标为,结合导数的几何意义可得方程,构造函数,并求得,由导函数求得有最小值,进而可知由唯一零点,即可代入求得的值;(2)将解析式代入,结合零点定义化简并分离参数得,构造函数,根据题意可知直线与曲线有两个交点;求得并令求得极值点,列出表格判断的单调性与极值,即可确定与有两个交点时的取值范围.【详解】(1)依题意,,,设切点为,,故,故,则;令,,故当时,,当时,,故当时,函数有最小值,由于,故有唯一实数根0,即,则;(2)由,得.所以“在区间上有两个零点”等价于“直线与曲线在有两个交点”;由于.由,解得,.当变化时,与的变化情况如下表所示:30+0极小值极大值所以在,上单调递减,在上单调递增.又因为,,,,故当或时,直线与曲线在上有两个交点,即当或时,函数在区间上有两个零点.【点睛】本题考查了导数的几何意义应用,由切线方程求参数值,构造函数法求参数的取值范围,函数零点的意义及综合应用,属于难题.20、(1)(2)是为定值,的横坐标为定值【解析】

(1)根据“直线垂直于轴时,四边形的面积为1”列方程,由此求得,结合椭圆离心率以及,求得,由此求得椭圆方程.(2)设出直线的方程,联立直线的方程和椭圆方程,化简后写出根与系数关系.求得直线的方程,并求得两直线交点的横坐标,结合根与系数关系进行化简,求得的横坐标为定值.【详解】(1)依题意可知,解得,即;而,即,结合解得,,因此椭圆方程为(2)由题意得,左焦点,设直线的方程为:,,.由消去并整理得,∴,.直线的方程为:,直线的方程为:.联系方程,解得,又因为.所以.所以的横坐标为定值.【点睛】本小题主要考查根据椭圆离心率求椭圆方程,考查直线和椭圆的位置关系,考查直线和直线交点坐标的求法,考查运算求解能力,属于中档题.21、(1)见解析(2)见解析【解析】

(1)求得函数的定义

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论