江苏省盐城市时杨中学2025届高三3月份第一次模拟考试数学试卷含解析_第1页
江苏省盐城市时杨中学2025届高三3月份第一次模拟考试数学试卷含解析_第2页
江苏省盐城市时杨中学2025届高三3月份第一次模拟考试数学试卷含解析_第3页
江苏省盐城市时杨中学2025届高三3月份第一次模拟考试数学试卷含解析_第4页
江苏省盐城市时杨中学2025届高三3月份第一次模拟考试数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省盐城市时杨中学2025届高三3月份第一次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,均为非零的平面向量,则“存在负数,使得”是“”的A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件2.已知向量,,当时,()A. B. C. D.3.已知是边长为的正三角形,若,则A. B.C. D.4.中国的国旗和国徽上都有五角星,正五角星与黄金分割有着密切的联系,在如图所示的正五角星中,以、、、、为顶点的多边形为正五边形,且,则()A. B. C. D.5.函数y=sin2x的图象可能是A. B.C. D.6.在复平面内,复数(为虚数单位)的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图在直角坐标系中,过原点作曲线的切线,切点为,过点分别作、轴的垂线,垂足分别为、,在矩形中随机选取一点,则它在阴影部分的概率为()A. B. C. D.8.已知是双曲线的左、右焦点,若点关于双曲线渐近线的对称点满足(为坐标原点),则双曲线的渐近线方程为()A. B. C. D.9.设直线过点,且与圆:相切于点,那么()A. B.3 C. D.110.已知l,m是两条不同的直线,m⊥平面α,则“”是“l⊥m”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件11.已知,,,则()A. B.C. D.12.如图在一个的二面角的棱有两个点,线段分别在这个二面角的两个半平面内,且都垂直于棱,且,则的长为()A.4 B. C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.在平行四边形中,已知,,,若,,则____________.14.已知点是抛物线的焦点,,是该抛物线上的两点,若,则线段中点的纵坐标为__________.15.已知数列{an}的前n项和为Sn,向量(4,﹣n),(Sn,n+3).若⊥,则数列{}前2020项和为_____16.已知向量,,,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中,为自然对数的底数.(1)当时,证明:对;(2)若函数在上存在极值,求实数的取值范围。18.(12分)已知x∈R,设,,记函数.(1)求函数取最小值时x的取值范围;(2)设△ABC的角A,B,C所对的边分别为a,b,c,若,,求△ABC的面积S的最大值.19.(12分)如图,在斜三棱柱中,侧面与侧面都是菱形,,.(Ⅰ)求证:;(Ⅱ)若,求平面与平面所成的锐二面角的余弦值.20.(12分)已知等差数列满足,.(l)求等差数列的通项公式;(2)设,求数列的前项和.21.(12分)为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援,现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.(1)求出易倒伏玉米茎高的中位数;(2)根据茎叶图的数据,完成下面的列联表:抗倒伏易倒伏矮茎高茎(3)根据(2)中的列联表,是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?附:,0.0500.0100.0013.8416.63510.82822.(10分)已知的内角、、的对边分别为、、,满足.有三个条件:①;②;③.其中三个条件中仅有两个正确,请选出正确的条件完成下面两个问题:(1)求;(2)设为边上一点,且,求的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据充分条件、必要条件的定义进行分析、判断后可得结论.【详解】因为,均为非零的平面向量,存在负数,使得,所以向量,共线且方向相反,所以,即充分性成立;反之,当向量,的夹角为钝角时,满足,但此时,不共线且反向,所以必要性不成立.所以“存在负数,使得”是“”的充分不必要条件.故选B.【点睛】判断p是q的什么条件,需要从两方面分析:一是由条件p能否推得条件q;二是由条件q能否推得条件p,定义法是判断充分条件、必要条件的基本的方法,解题时注意选择恰当的方法判断命题是否正确.2、A【解析】

根据向量的坐标运算,求出,,即可求解.【详解】,.故选:A.【点睛】本题考查向量的坐标运算、诱导公式、二倍角公式、同角间的三角函数关系,属于中档题.3、A【解析】

由可得,因为是边长为的正三角形,所以,故选A.4、A【解析】

利用平面向量的概念、平面向量的加法、减法、数乘运算的几何意义,便可解决问题.【详解】解:.故选:A【点睛】本题以正五角星为载体,考查平面向量的概念及运算法则等基础知识,考查运算求解能力,考查化归与转化思想,属于基础题.5、D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.6、D【解析】

将复数化简得,,即可得到对应的点为,即可得出结果.【详解】,对应的点位于第四象限.故选:.【点睛】本题考查复数的四则运算,考查共轭复数和复数与平面内点的对应,难度容易.7、A【解析】

设所求切线的方程为,联立,消去得出关于的方程,可得出,求出的值,进而求得切点的坐标,利用定积分求出阴影部分区域的面积,然后利用几何概型概率公式可求得所求事件的概率.【详解】设所求切线的方程为,则,联立,消去得①,由,解得,方程①为,解得,则点,所以,阴影部分区域的面积为,矩形的面积为,因此,所求概率为.故选:A.【点睛】本题考查定积分的计算以及几何概型,同时也涉及了二次函数的切线方程的求解,考查计算能力,属于中等题.8、B【解析】

先利用对称得,根据可得,由几何性质可得,即,从而解得渐近线方程.【详解】如图所示:由对称性可得:为的中点,且,所以,因为,所以,故而由几何性质可得,即,故渐近线方程为,故选B.【点睛】本题考查了点关于直线对称点的知识,考查了双曲线渐近线方程,由题意得出是解题的关键,属于中档题.9、B【解析】

过点的直线与圆:相切于点,可得.因此,即可得出.【详解】由圆:配方为,,半径.∵过点的直线与圆:相切于点,∴;∴;故选:B.【点睛】本小题主要考查向量数量积的计算,考查圆的方程,属于基础题.10、A【解析】

根据充分条件和必要条件的定义,结合线面垂直的性质进行判断即可.【详解】当m⊥平面α时,若l∥α”则“l⊥m”成立,即充分性成立,若l⊥m,则l∥α或l⊂α,即必要性不成立,则“l∥α”是“l⊥m”充分不必要条件,故选:A.【点睛】本题主要考查充分条件和必要条件的判断,结合线面垂直的性质和定义是解决本题的关键.难度不大,属于基础题11、C【解析】

利用二倍角公式,和同角三角函数的商数关系式,化简可得,即可求得结果.【详解】,所以,即.故选:C.【点睛】本题考查三角恒等变换中二倍角公式的应用和弦化切化简三角函数,难度较易.12、A【解析】

由,两边平方后展开整理,即可求得,则的长可求.【详解】解:,,,,,,.,,故选:.【点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

设,则,得到,,利用向量的数量积的运算,即可求解.【详解】由题意,如图所示,设,则,又由,,所以为的中点,为的三等分点,则,,所以.【点睛】本题主要考查了向量的共线定理以及向量的数量积的运算,其中解答中熟记向量的线性运算法则,以及向量的共线定理和向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于中档试题.14、2【解析】

运用抛物线的定义将抛物线上的点到焦点距离等于到准线距离,然后求解结果.【详解】抛物线的标准方程为:,则抛物线的准线方程为,设,,则,所以,则线段中点的纵坐标为.故答案为:【点睛】本题考查了抛物线的定义,由抛物线定义将点到焦点距离转化为点到准线距离,需要熟练掌握定义,并能灵活运用,本题较为基础.15、【解析】

由已知可得•4Sn﹣n(n+3)=0,可得Sn,n=1时,a1=S1=1.当n≥2时,an=Sn﹣Sn﹣1.可得:2().利用裂项求和方法即可得出.【详解】∵⊥,∴•4Sn﹣n(n+3)=0,∴Sn,n=1时,a1=S1=1.当n≥2时,an=Sn﹣Sn﹣1.,满足上式,.∴2().∴数列{}前2020项和为2(1)=2(1).故答案为:.【点睛】本题考查了向量垂直与数量积的关系、数列递推关系、裂项求和方法,考查了推理能力与计算能力,属于中档题.16、2【解析】

由得,算出,再代入算出即可.【详解】,,,,解得:,,则.故答案为:2【点睛】本题主要考查了向量的坐标运算,向量垂直的性质,向量的模的计算.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)【解析】

(1)利用导数说明函数的单调性,进而求得函数的最小值,得到要证明的结论;(2)问题转化为导函数在区间上有解,法一:对a分类讨论,分别研究a的不同取值下,导函数的单调性及值域,从而得到结论.法二:构造函数,利用函数的导数判断函数的单调性求得函数的值域,再利用零点存在定理说明函数存在极值.【详解】(1)当时,,于是,.又因为,当时,且.故当时,,即.所以,函数为上的增函数,于是,.因此,对,;(2)方法一:由题意在上存在极值,则在上存在零点,①当时,为上的增函数,注意到,,所以,存在唯一实数,使得成立.于是,当时,,为上的减函数;当时,,为上的增函数;所以为函数的极小值点;②当时,在上成立,所以在上单调递增,所以在上没有极值;③当时,在上成立,所以在上单调递减,所以在上没有极值,综上所述,使在上存在极值的的取值范围是.方法二:由题意,函数在上存在极值,则在上存在零点.即在上存在零点.设,,则由单调性的性质可得为上的减函数.即的值域为,所以,当实数时,在上存在零点.下面证明,当时,函数在上存在极值.事实上,当时,为上的增函数,注意到,,所以,存在唯一实数,使得成立.于是,当时,,为上的减函数;当时,,为上的增函数;即为函数的极小值点.综上所述,当时,函数在上存在极值.【点睛】本题考查利用导数研究函数的最值,涉及函数的单调性,导数的应用,函数的最值的求法,考查构造法的应用,是一道综合题.18、(1);(2)【解析】

(1)先根据向量的数量积的运算,以及二倍角公式和两角和的正弦公式化简得到f(x)=,再根据正弦函数的性质即可求出答案;(2)先求出C的大小,再根据余弦定理和基本不等式,即可求出,根据三角形的面积公式即可求出答案.【详解】(1).令,k∈Z,即时,,取最小值,所以,所求的取值集合是;(2)由,得,因为,所以,所以,.在中,由余弦定理,得,即,当且仅当时取等号,所以的面积,因此的面积的最大值为.【点睛】本题考查了向量的数量积的运算和二倍角公式,两角和的正弦公式,余弦定理和基本不等式,三角形的面积公式,属于中档题.19、(Ⅰ)见解析;(Ⅱ).【解析】试题分析:(1)取中点,连,,由等边三角形三边合一可知,,即证.(2)以,,为正方向建立空间直角坐标系,由向量法可求得平面与平面所成的锐二面角的余弦值.试题解析:(Ⅰ)证明:连,,则和皆为正三角形.取中点,连,,则,,则平面,则(Ⅱ)由(Ⅰ)知,,又,所以.如图所示,分别以,,为正方向建立空间直角坐标系,则,,,设平面的法向量为,因为,,所以取面的法向量取,则,平面与平面所成的锐二面角的余弦值.20、(1);(2).【解析】试题分析:(1)设等差数列满的首项为,公差为,代入两等式可解。(2)由(1),代入得,所以通过裂项求和可求得。试题解析:(1)设等差数列的公差为,则由题意可得,解得.所以.(2)因为,所以.所以.21、(1)190(2)见解析(3)可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关.【解析】

(1)排序后第10和第11两个数的平均数为中位数;(2)由茎叶图可得列联表;(3)由列联表计算可得结论.【详解】解:(1).(2)抗倒伏易倒伏矮茎154高茎1016(3)由于,因此可以在犯错误的概率不超过1%的前提下,认为抗倒伏

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论