WKM 增强智能体规划的世界知识模型 Agent Planning with World Knowledge Model_第1页
WKM 增强智能体规划的世界知识模型 Agent Planning with World Knowledge Model_第2页
WKM 增强智能体规划的世界知识模型 Agent Planning with World Knowledge Model_第3页
WKM 增强智能体规划的世界知识模型 Agent Planning with World Knowledge Model_第4页
WKM 增强智能体规划的世界知识模型 Agent Planning with World Knowledge Model_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

AgentPlanningwithWorldKnowledgeModel

ShuofeiQiao◆RunnanFang◆NingyuZhang◆YuqiZhu◆,XiangChen◆,

ShuminDeng%,YongJiang

,PengjunXie

,FeiHuang

,HuajunChen◆t

◆ZhejiangUniversity%NationalUniversityofSingapore

AlibabaGroup

{shuofei,zhangningyu}@zju.edu.cn

arXiv:2405.14205v2[cs.CL]15Oct2024

Abstract

Recentendeavorstowardsdirectlyusinglargelanguagemodels(LLMs)asagentmodelstoexecuteinteractiveplanningtaskshaveshowncommendableresults.Despitetheirachievements,however,theystillstrugglewithbrainlesstrial-and-erroringlobalplanningandgeneratinghallucinatoryactionsinlocalplanningduetotheirpoorunderstandingofthe“real”physicalworld.Imitatinghumans’mentalworldknowledgemodelwhichprovidesglobalpriorknowledgebeforethetaskandmaintainslocaldynamicknowledgeduringthetask,inthispaper,weintroduceparametricWorldKnowledgeModel(WKM)tofacilitateagentplanning.Concretely,westeertheagentmodeltoself-synthesizeknowledgefrombothexpertandsampledtrajectories.ThenwedevelopWKM,providingpriortaskknowledgetoguidetheglobalplanninganddynamicstateknowledgetoassistthelocalplanning.Experimentalresultsonthreecomplexreal-worldsimulateddatasetswiththreestate-of-the-artopen-sourceLLMs,Mistral-7B,Gemma-7B,andLlama-3-8B,demonstratethatourmethodcanachievesuperiorperformancecomparedtovariousstrongbaselines.Besides,weanalyzetoillustratethatourWKMcaneffectivelyalleviatetheblindtrial-and-errorandhallucinatoryactionissues,providingstrongsupportfortheagent’sunderstandingoftheworld.Otherinterestingfindingsinclude:1)ourinstance-leveltaskknowledgecangeneralizebettertounseentasks,2)weakWKMcanguidestrongagentmodelplanning,and3)unifiedWKMtraininghaspromisingpotentialforfurtherdevelopmen

t3.

agentmodel

→trial-and-error

correctpath

first

step

hallucinatory

action(a)

agentmodel

correctpath

taskknowledge

state

[ulu]+[un]

worldknowledgemodel

……

trajectories

know_probsagent_probs

knowledge

firststep

(b)

Figure1:Traditionalagentplanningvs.Agentplanningwithworldknowledgemodel.

1Introduction

TheremarkableadvancesinLargeLanguageModels(LLMs)havewitnessedarapiddevelopmentof

variousnaturallanguageprocessingtasks[25,

16,

28,

47,

60,

33]

.Recently,multipleattemptsthat

*EqualContribution.

tCorrespondingAuthor.

3Thecodeisavailableat

/zjunlp/WKM.

38thConferenceonNeuralInformationProcessingSystems(NeurIPS2024).

3

TrainingPhase

WorldKnowledgeModel

(c)ModelTraining

●inputoutput

(at,st,at+1)

Agent:gotofridge1

Obs:Thefridge1isclosed

StateKnowledge:Yourtaskisto…Youarechecking…

Agent:openfridge1

Obs:Thefridge1isopen.Init

(a)TaskKnowledgeSynthesis

(b)StateKnowledgeSummarization

Task:putacleanegginmicrowave

Task:puttwonewspapersindrawer

agentmodel

knowledgemodel

stateknowledgebase

fromagentmodel

gotake

put

heat

Stateknowledgewillnot

appearinthecontextof

agentmodelduringtraining

andinference.

Youareinthemiddleofaroom…

Task:putacleanegginmicrowave.

TaskKnowledge:

Youshouldfirstfindaneggand…Theworkflowsare:…

Agent:gotocountertop1

Obs:Onthecountertop1,you

seeacreditcard2,adishsponge2…

Agent:gotocountertop2

Obs:Onthecountertop2,you

seeacreditcard1,apen1,apen

2,anewspaper1…

Reward:0.0

τl

ExpertTrajectory

SampledTrajectory

PlanningPhase

(d)PlanningwithWKM

Youareinthemiddleofaroom.Lookingquicklyaroundyou,youseeaarmchair1,acabinet1,adrawer2,adrawer1,asofa1…

Task:puttwonewspapersindrawer.

TaskKnowledge:

Whentryingtoplacemultipleobjectsinadrawer,

youshouldfirstlocatealltheobjects,thengotothedraweroneatatime,andplaceeachobjectinsidebeforeclosingthedrawer.Theactionworkflowsare:

1)Locateallobjects.

2)Gotothedrawer.

3)Placeoneobjectin/onthedrawer.

4)Closethedrawer.

5)Repeatsteps2-4foreachobject.

at

Agent:gotosofa1

fromknowledgemodelfromenvironment

(1-γ)·pknow+γ·pagent

Obs:Onthesofa1,youseeacreditcard2,a

newspaper1.st

StateKnowledge:Yourtaskistoputtwo

newspapersindrawer.Youarecheckingsofa1andthereisanewspaper1onit.

gotake

put

at+1

heat

Agent:takenewspaper1fromsofa1

Obs:Youpickupthenewspaper1fromthesofa1.

StateKnowledge:Yourtaskistoputtwo

newspapersindrawer.Youarecheckingsofa1andhavefoundonenewspaper.Nextyoushouldfind

anothernewspaper.

……

Agent:putnewspaper2in/onthedrawer1Reward:1.0

Agent:gotofridge1

Obs:Thefridge1isclosed

Agent:openfridge1

Obs:Thefridge1isopen.Init,youseeacup3,acup1,a

lettuce1…

Agent:putegg2inmicrowave1

Reward:1.0

τw

Figure2:OverviewofourWKM.Wetrainaworldknowledgemodelontheknowledgesynthesizedbytheagentmodelitselffrombothexpertandexploredtrajectories,providingpriortaskknowledgetoguideglobalplanninganddynamicstateknowledgetoassistlocalplanning.

theactionat+1basedonhtateachtimestept+1:

at+1~πθ(·|ht).(2)Specifically,a0~πθ(·|u)isgeneratedaccordingtothetaskinstructionu.Thewholetrajectoryτconcludeswhenthetaskiscompletedorexceedsthemaximumtimesteps.Thentheproductionoftheentiretrajectorywithtimelengthncanbemodeledas:

n

πθ(τ|u)=Ⅱπθ(at+1|ht)πθ(a0|u).(3)

t=0

Ultimately,thefinalrewardr(u,τ)∈[0,1]representingthetaskcompletionrateiscalculated.Notethatwefollowa

REACT-style[54]trajectorythatincludesrationalesbeforeeachaction

.Weuseatorepresenttheactionwithrationalesforconvenience.

WorldKnowledgeModel.Worldknowledgemodelservesashumans’mentalcognitionofthephysicalenvironment,moreintricatethanthewordknowledgemodelwhichLLM-poweredagent

modelsaretrainedtobe[61,

10,

52,

13]

.Our“world”herereferstothesimulatedenvironmentofthetask.Basedonthestaticenvironmentofthetaskandthedynamicchangesduringinteractionwiththeagent,wedefineworldknowledgeasacombinationofpriorglobalknowledgeanddynamiclocalknowledge,correspondingtotheblindtrial-and-errorprobleminglobalplanningandthehallucinatoryactionissueinlocalplanningintraditionalagentmodels,respectively.Toattainpreciseandefficientagentplanning,wedevelopaparametricWKMtosimulatethementalWKMofhumans.

3Method

AsshowninFigure

2,westeertheagentmodeltoself-synthesizethe

taskknowledgefromthe

comparisonofexpertandsampledtrajectories(§3.1)

.Thenweprompttheagentmodeltoself-summarizethestateknowledgebasedonhistoricalbehaviorandconstructastateknowledgebase

(§3.2)

.ThegeneratedknowledgewillbeintegratedintotheexperttrajectoriesfortrainingtheWKM.

Afterthetrainingprocess(§3.3),weaugmenttheagentmodelwiththeworldknowledgemodelto

achieveeffectiveandaccurateplanning(§3.4)

.

3.1TaskKnowledgeSynthesis

Thetaskknowledgeservesasthepriorknowledgetoguidetheagentmodel’sglobalplanningandpreventitfromdroppingintoblindtrial-and-error.

4

ExperiencedAgentExploration.Weprimarilyacquiretaskknowledgethroughthecomparisonofpreferencetrajectories(chosenvs.rejected).Inordertoimprovethequalityofrejectedtrajectoriesandobtainmoretargetedtaskknowledge,weemployanexperiencedagentforexploration.Firstly,we

trainavanillalanguagemodelwithexperttrajectories4

fromthetrainingsettoobtainanexperiencedagent.Subsequently,theexperiencedagentexploresthetrainingsettasksagaintogeneraterejectedtrajectories.Ourpurposeistoextractsuperiortaskknowledgethatcannotbeacquiredsolelythroughsupervisedfine-tuningonchosentrajectories,thusfurthereffectivelyboostingtheagent’scapabilities.

SelfKnowledgeSynthesis.Withtheexperttrajectoriesasthechosenonesandthetrajectoriessampledfromtheexperiencedagentastherejectedones,weprompttheagentmodelitselftosynthesizethetaskknowledge.SupposingKisthetaskknowledgespace:

κ∼πθ(·|ρTaskKnow,u,τw,τl),(4)whereκ∈Kisthetaskknowledge,ρTaskKnowstandsfortheprompttoinstructthetaskknowledgeextraction,andτw,τlarethechosenandrejectedtrajectoriesrespectively.Notethatgiventhesametasku,τwandτlalwayssatisfyr(u,τw)=1≥r(u,τl).Evenwhenr(u,τw)=r(u,τl),westillconsidertrajectoriessampledfromtheexperiencedagentasrejectedones.Thisisbecauseexperttrajectoriesoftenhaveshortersteplengths,enablingtheagenttolearnmoreknowledgeofefficientplanning.Fordetailedpromptsoftaskknowledgesynthesis,pleaserefertoAppendix

I.1.

3.2StateKnowledgeSummarization

Thestateknowledgeservesasthedynamicknowledgetoconstraintheagentmodel’slocalplanningandpreventitfromgeneratinghallucinatoryactions.Weprompttheagentmodeltoself-summarizestateknowledgeateachplanningstepbasedontheexperttrajectoriestoguaranteequality.Fordetailedpromptsofstateknowledgesummarization,pleaserefertoAppendix

I.2.

SupposingthepromptusedtosummarizestateknowledgeisρStateKnowandthestateknowledges∈SisapartofthestatespaceS,thegenerationofstateknowledgeattimetcanberepresentedas:

st∼πθ(·|ρStateKnow,ht).(5)

StateKnowledgeBaseConstruction.Toavoidconfusioncausedbyexcessiveadditionalinfor-mation,insteadofexplicitlyconcatenatingthestateknowledgetothecontext,weconstructastate

knowledgebaseforretrieval(weanalyzein§4.3

howexplicitstateknowledgemayaffecttheperfor-manceofagentmodel).Wecombinethestateknowledgestwiththepreviousactionatandnextactionat+1fromtheexperttrajectorytoformaaction-state-actiontriplet(at,st,at+1).Afteriterat-ingthroughallexperttrajectories,weobtainaStateKnowledgeBaseB={(s,apre,anext)(i)}i||1,whereapre=at,anext=at+1,and|B|isthesizeofthestateknowledgebase.

3.3ModelTraining

Weintegratethegeneratedworldknowledgeintoexperttrajectoriesandtrainaworldknowledgemodel.Theagentmodelneedstobere-trainedtoadapttotheincorporationoftaskknowledge.NotethatouragentmodelandknowledgemodelarebothtrainedwithLoRAsharingthesamebackbone.WelisttheexamplesoftrainingdataforboththeagentmodelandWKMinAppendix

E.

AgentModelTraining.GiventheexperttrajectoriesdatasetD={(u,κ,τw)(i)}i|1|withtask

knowledgeκgeneratedin§3.1,wetraintheagentmodeltofollowthetaskknowledgetogenerate

actions.Underanauto-regressivemanner,thelossoftheagentmodelcanbeformulatedas:

Lagent(πθ)=−Eτw∼D[πθ(τw|u,κ)](6)

SupposeX=(x1,x2,...,x|X|)isthetokensequenceofthetrajectoryτw,wehave:

Here1(xj∈A)istheindicatorfunctiontomasktokensunrelatedtoactions.Pleasenotethatτwheredoesnotinclude

thestateknowledgementionedin§3.2.

4Fordetailsonhowtocollectexperttrajectories,pleaserefertoAppendix

A.

5

WorldKnowledgeModelTraining.Themaindifferenceinthetrainingdatabetweentheagentandknowledgemodelistheaddedstateknowledge.Giventheexperttrajectoriesdatasetwithboth

taskandstateknowledgeD′={(u,κ,τ)(i)}i|whereτ=(a0,o0,s0,...,an,on,sn),theloss

oftheknowledgemodelπϕcanbeformulatedas:

Lknow(πϕ)=−Eκ,τ∼D′[πϕ(κ|u)πϕ(τ|u,κ)](8)SupposeX′=(x,x,...,x′|X′|)isthetokensequenceoftheexperttrajectorywithstateknowledgeτandY=(y1,y2,...,y|Y|)representsthetokensequenceofthetaskknowledgeκ,wehave:

πϕ(κ|u)=−Σi|1|logπϕ(yi|u,y<i)(9)

|X′|

πϕ(τ|u,κ)=−(1(x∈S)×logπϕ(x|u,κ,x′<j)),(10)

where1(xj∈S)istheindicatorfunctiontomasktokensunrelatedtostateknowledge.

3.4AgentPlanningwithWorldKnowledgeModel

Atinferencetime,theagentmodelplansontheevaluationtaskswiththeaidoftheworldknowledgemodel.Weredefinethehistoricaltrajectoryht=(u,κ,a0,o0,a1,o1,...,at,ot).Givenaspecifictaskinstructionu,theknowledgemodelfirstgeneratesthetaskknowledgeκ∼πϕ(·|u),thentheagentmodelstartsplanning.AssumingtheavailableactionsetAu⊆Aforthetaskuis

(α,α,...,αu(|Au|)),atanytimet≥0,insteadofdirectlygeneratinganextactionat+1∈Au

basedonht,wefirstemploytheworldknowledgemodeltogeneratethecurrentstateknowledgest∼πϕ(·|ht)andleveragesttoquerythestateknowledgebaseB={(s,apre,anext)(i)}i||1.Withthestateknowledgeasthekey,weretrieveNnearesttripletsfromwhereapre=atbasedon

semanticsimilarityandcollectthecorrespondingnextactionsanext.Wecounttheprobabilityof

eachactionpknow(αu(i))=i,whereNiistheoccurrencenumberofactionαu(i)inallthecollected

anext.Therefore,wegettheprobabilityacquiredfromthestateknowledgebase:

Pknow(Au)=(pknow(α),pknow(α),···,pknow(αu(|Au|))),

|Σi|pknow(αu(i))=1.(11)

Afterward,wesampletheprobabilitydistributionofthefirsttokenforeachactionαu(i),1≤i≤|Au|fromthelastlayeroftheagentmodelandapplyasoftmaxfunctiontonormalizetheprobabilitydistribution.Wedefinetheprobabilityacquiredfromtheagentmodelas:

Pagent(Au)=(pagent(α),pagent(α),···,pagent(αu(|Au|))),

|Σi|pagent(αu(i))=1.(12)

Finally,wedeterminethenextactionbycombiningtheabovetwoprobabilities:

at+1=argmax(γ·pagent(αu(i))+(1−γ)·pknow(αu(i))),(13)

αu(i)∈Au,1≤i≤|Au|

whereγisthehyperparameterthatcontrolstheproportionofPagent(Au).Basedontheabove,weenhancetheagentplanningbyglobalguidancefromtaskknowledgeandlocalconstraintsfromstateknowledgegeneratedbyourWKM.DuetotheWKMandretrieval,theinferencestageincursadditionaltimeoverheadcomparedtothepureagentmodel.Theapproximateratioisaround2.5:1.

4Experiments

4.1ExperimentalSettings

DatasetsandMetrics.Weevaluateourmethodonthreereal-worldsimulatedplanningdatasets:ALFWorld

[41],

WebShop

[53],and

ScienceWorld

[50]

.AlFWorldandScienceWorldinclude

6

Table1:MainResults.Thebestresultsaremarkedinboldandthesecond-bestresultsaremarkedwithunderline.Alltheprompt-basedbaselines(。)areevaluatedunderone-shotpromptingandallthefine-tuning-basedbaselines(。)aretrainedthroughLoRA.RedrepresentsthechangesofWKMrelativetotheoptimalresultsinthebaselines.WKMandagentmodelaredifferentLoRAssharingthesamebackbone.

BackboneMethod

ALFWorld

WebShop

ScienceWorld

Seen

Unseen

Seen

Unseen

GPT-3.5-TurboGPT-4

。REACT

8.5744.29

5.9738.05

44.3762.76

15.4167.32

13.9965.09

Mistral-7B

。REACT

7.86

5.22

14.63

20.72

17.65

。Reflexion

11.56

6.00

16.64

21.07

18.11

。NAT

64.43

68.96

61.01

57.12

50.79

。ETO

66.84

71.43

64.09

58.17

51.85

。KNOWAGENT

70.44

70.72

61.28

59.32

47.24

WKM

73.57+3.13

76.87+5.44

65.48+1.39

62.12+2.80

53.62+1.77

Gemma-7B

。REACT

6.43

2.24

5.93

3.58

3.51

。Reflexion

7.14

2.99

7.71

4.94

3.93

。NAT

67.86

65.88

55.82

47.63

44.98

。ETO

。KNOWAGENT

66.4369.29

68.6667.60

62.6758.80

50.4448.55

47.8445.28

WKM

70.71+1.42

70.40+1.74

63.75+1.08

53.68+3.24

49.24+1.40

Llama-3-8B

。REACT

2.86

3.73

19.32

24.76

22.66

。Reflexion

4.29

4.48

22.73

27.23

25.41

。NAT

60.71

59.70

61.60

55.24

48.76

。ETO

64.29

64.18

64.57

57.90

52.33

。KNOWAGENT

66.71

62.69

64.40

58.67

49.18

WKM

68.57+1.86

65.93+1.75

66.64+2.07

60.12+1.55

54.75+2.42

unseentaskstoevaluatetheagent’sgeneralizationability.TherewardofALFWorldisbinary0or1,indicatingwhethertheagenthascompletedthetaskornot.WebShopandScienceWorldprovidedenserewardsfrom0to1tomeasurethecompletionlevelofthetask.Forallthedatasets,weapplyaveragerewardasthefinalmetrics.PleaserefertoAppendix

B

fordetaileddatasetinformation.

ModelsandBaselines.Weevaluateonthreestate-of-the-artopen-sourcemodels:1)Mistral-7B

[16],theMistral-7B-Instruct-v0.2version

.2)Gemma-7B

[24],theGemma-1.1-7B-itversion

.3)Llama-3-8B

[25],theMeta-Llama-3-8B-Instructversion

.Wecompareourmethodwithtwoprompt-basedbaselines:REACT

[54]and

Reflexion

[40]

.Besides,weadopttwostrongbaselinesthatintroducerejectedtrajectoriesintothetrainingprocesstolearnfromexperience:NAT

[49],learn

fromrejectedtrajectoriesthroughSFT,andETO

[44],learnfromrejectedtrajectoriesthroughDPO

[36]

.Moreover,wecomparewithaknowledge-augmentedplanningmethodKNOWAGENT.WealsoincludeChatGPT

(gpt-3.5-turbo-0125)[27]and

GPT-4

(gpt-4-32K-0613)[28]forcomparison

.Alltheprompt-basedbaselinesaretestedunderone-shotandallthefine-tuning-basedbaselinesare

trainedwithLoRA[12]

.PleaserefertoAppendix

C

forbaselinesandre-producingdetails.

TrainingandInferenceSetups.

Wefine-tunetheproposedapproachwithLoRA[12]usingthe

LlamaFactory[62]framework

.Duringtraining,themodelistunedafterfinishingtheentiretrajectoryratherthaneachstepofaction.Thelearningrateis1e-4andthesequencelengthis2048forallthemodels.Thetrainingepochis3andthebatchsizeis32.

WeadopttheAdamWoptimizer[22]

withacosinelearningscheduler.Duringinference,weapplytheembeddinglayerofWKMastheencoderandusethecosinesimilaritybetweensentencesforretrieval.Thenumberofretrievedaction-state-actiontripletsNissetto3000andthePagent(Au)weightγissetto{0.4,0.5,0.7}.Allthetrainingandinferenceexperimentsareconductedon8NVIDIAV10032GGPUswithin12hours.PleaserefertoAppendix

D

fordetailedhyperparametersusedinourpaper.

4.2Results

MainResults.AsshowninTable

1,

forprompt-basedbaselinesonopen-sourcemodels,bothRE-ACTandReflexionexhibitpoorperformance,farbehindourmethodandfine-tuning-basedbaselinesonvariousdatasets.GPT-3.5-TurboperformsordinarilyontwodatasetsotherthanWebShop,anditevenfallsbehindMistral-7BandLlama-3-8B’sREACTperformanceonScienceWorld.However,GPT-4exhibitsstrongperformanceacrossvariousdatasets.Nevertheless,ourapproach,through

7

w/oall

w/state

w/task

w/task&state

w/orejected

merge

prompt

AverageReward

69.29

73

.57

7675.37

.87

71.5770.71

69.4070.67

67.86

67.19

65.4665.14

67.40

63.57

80

70

60

50

seenunseen

62.44

63.68

65

.48

63.9763.70

61.03

56.98

80

70

60

50

test

60.81

62

.12

58.51

52.78

55.04

55.49

56.36

53.425350.3251.52

.62

51.7848.38

45.27

70

60

50

40

seenunseen

ALFWorldWebShopScienceWorld

Figure3:AblationStudyonMistral-7B.w/oallmeansthevanillaexperiencedagentmodeltrainingwithpureexperttrajectories.w/stateistestingagentmodelwithonlystateknowledgebaseconstraints.w/taskstandsforguidingagentmodelwithonlytaskknowledge.w/task&stateisourWKMwithbothtaskknowledgeguidanceandstateknowledgeconstraints.w/orejectedmeanssynthesizingtaskknowledgesolelythroughexperttrajectories.mergestandsfortrainingWKMandtheagentmodeltogetherwithonesinglemodel.promptmeansusingfew-shotpromptstoreplacetheWKMforprovidingknowledge.

Table2:AverageSteps.ThemaximumnumberofstepsinALFWorldandWebShopis40and10.InScienceWorld,thenumberofstepsrangesfrom10to120dependingonthetasktype,withanaverageofaround40.

Method

ALFWorld

WebShop

ScienceWorld

Seen

Unseen

Seen

Unseen

NAT

23.27

23.42

4.08

20.18

21.21

ETO

19.82

22.29

3.99

24.13

26.35

KNOWAGENT

18.51

24.56

4.01

21.06

24.74

WKM

17.66

17.92

3.97

18.74

19.59

Table3:HallucinatoryActionRatesonALFWorld.Wecalculatetheproportionoftrajectoriescontaininginvalidactionsregard-lessoftheircorrectness.

Method

ALFWorld

SeenUnseen

NATETO

KNOWAGENT

45.71%50.00%34.29%36.57%33.57%44.78%

WKM

32.86%29.85%

LoRAtrainingalone,surpassesGPT-4onALFWorld(44.29→73.57onseen,38.05→76.87onunseen)andWebShop(62.76→66.64).Forfine-tuning-basedbaselines,bothNATandETOfallbehindourmethod,implyingthatjustintegratingworldknowledgeforagentmodelsisworthmorethanfurtherfussySFTorDPOonnegativeexamples.OurmethodalsoperformsbetterthanKNOWA-GENTwhichbringshuman-designedfixedactionknowledgeandlongactionpathsintotrajectories.ThissuggeststheeffectivenessofourWKMwhichisresponsibleforgeneratinginstance-leveltaskknowledgeandmaintainingimplicitactionconstraints.Furthermore,KNOWAGENT’sperformanceonunseentasksisnotasimpressiveasonseentasks,whileWKMcankeepitsadvantage.ThisphenomenonalsodemonstratesthegeneralizationabilityofWKM.

ApproachAblations.AsshowninFigure

3,takingMistral-7Basanexample,wedecompose

thekeycomponentsofWKMtoexaminetherolesofthetaskandstateknowledgeseparately.Inamacroview,removingeachmoduleresultsinacleardropintheagent’sperformance,whichvalidatesthepowerofourworldknowledge.Furthermore,theimprovementthroughtaskknowledge(w/task)ismorepronouncedthanthatthroughstateknowledge(w/state),suggestingthenecessityofglobalpriorknowledgeforagentplanning.Amoremicroobservationrevealsthattheimpactofstateknowledgeismoresignificantonseentaskscomparedtounseentasks,whiletheinfluenceoftaskknowledgeissustainableacrossseenandunseentasks.Thismaybeattributedthatalthoughourreal-timestateknowledgeisgeneratedbyWKM,thestateknowledgebaseisbuiltonthetrainingset,whichmayweakengeneralizationtosomeextent.Additionally,tovalidateourmotivationofallowingtheagenttolearntaskknowledgefrombothexpertandgeneratedtrajectories,weexcludetherejectedtrajectoriesduringthesynthesisoftaskknowledge,instructingtheagentmodeltosynthesizeknowledgesolelybasedonthechosentrajectories.Theresults(w/orejected)demonstratethatlearningfromthecontrastbetweenchosenandrejectedtrajectoriesismoreeffectivethanlearningfromchosenexamplesalone.ThisprocedureisalittlesimilartoDPO,butweachieveitthroughknowledgeaugmentationratherthandirectlyconvertingitintoalosscalculationbetweenchosenandrejectedtrajectories.AdditionalresultscanfurtherevidentthattrainingaWKMseparatelyperformsbetterthantrainingonesinglemodeltogetherwiththeagentmodelaswellasusingfew-shotpromptstoreplaceWKMforprovidingknowledge.

4.3Analysis

Worldknowledgecanmitigateblindtrial-and-errorandreducehallucinatoryactions.WecomparethenumberofplanningstepsforeachdatasetbetweenthreestrongbaselinesandWKMandcalculatetheaveragestepsofeachmethod.AsdepictedinFigure

9

(inAppendix

F),WKM

8

demonstratestheabilitytocompleteasignificantproportionoftasksusingtheshortesttrajectory,indicatingthatguidancefromworldknowledgecaneffectivelyreducetheagent’sblindtrial-and-errorintheenvironment.TakingafurtherperspectivefromanaveragestandpointinTable

2,itcan

beobservedthatWKMexhibitsloweraverageplanningstepscomparedtootherbaselines.AsALFWorldcanrespondtoinvalidactions,inTable

3,wecountthepercentageofhallucinatoryactions

thatoccurredintrajectoriesfromALFWorldforeachmethod.Theresultsconfirmtheeffectivenessofourworldknowledgemodeltodecreasehallucinatoryactions.Furthermore,itisworthnotingthatmostbaselinesshowaprominentincreaseintheaveragenumberofstepsandpercentageofinvalidactionswhentransitioningfromseentaskstounseentasks,butWKMcanstillmaintainarelativelylowlevel.Thisreflectslaterallythatourworldknowledgecanstilleffectivelyguidetheagentmodelonunseentasks,highlightingtheknowledgegeneralizationbroughtbytheworldknowledgemodel.Toseehowourworldknowledgeworks,pleaserefertoourcasestudyinAppendix

H.

Ourinstance-levelknowledgecangeneralizebettertounseentasks.Tofurtherexplorethebenefitofusingaknowledgemodeltogenerateinstance-leveltaskknowledge,wecarefullysurveythetaskknowledgegeneratedbyourWKMandabstractitintodataset-levelknowledgeforeachdataset.Thenweretraintheagentmodelto

adapttonewdataset-levelknowledge5.

AsillustratedinFigure

4,

wecomparetheperformanceofdataset-levelknowledgewithourinstance-leveltaskknowledge(WKMw/ostate)onALFWorldandScienceWorld.Itcanbeobservedthatourmodel-generatedinstance-levelknowledgenotonlysurpasseshuman-designedknowledgeonseentasksbutalsoexhibitsevenmoreremarkableperformanceonunseentasks,withtheimprovementinperformanceonunseentaskssignificantlygreaterthanthatonseentasks.Thisphenomenonstraightlyreflectsthestronggeneralizationabilityofourknowledgemodelcomparedtorigidlydesignedknowledgebyhumans.

AverageReward

80

70

60

50

40

HumanWKM

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论