版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页中考数学总复习《与圆有关的位置关系》专项测试卷附答案学校:___________班级:___________姓名:___________考号:___________【A层·基础过关】1.如图,AB是☉O的切线,A为切点,连接OA,OB,若∠B=20°,则∠AOB的度数为()A.80° B.70° C.60° D.50°2.如图,点P为☉O外一点,过点P作☉O的切线PA,PB,记切点为A,B,点C为☉O上一点,连接AC,BC.若∠ACB=62°,则∠APB等于()A.68° B.64° C.58° D.56°3.如图,点A是☉O外一点,AB,AC分别与☉O相切于点B,C,点D在BDC上.已知∠A=50°,则∠D的度数是.
4.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6.以点C为圆心,r为半径作圆,当所作的圆与斜边AB所在的直线相切时,r的值为.
5.如图,以四边形ABCD的对角线BD为直径作圆,圆心为O,过点A作AE⊥CD的延长线于点E,已知DA平分∠BDE.(1)求证:AE是☉O的切线;(2)若AE=4,CD=6,求☉O的半径和AD的长.【B层·能力提升】6.(2024·包头中考)如图,四边形ABCD是☉O的内接四边形,点O在四边形ABCD内部,过点C作☉O的切线交AB的延长线于点P,连接OA,OB.若∠AOB=140°,∠BCP=35°,则∠ADC的度数为.
7.(2024·凉山州中考)如图,☉M的圆心为M(4,0),半径为2,P是直线y=x+4上的一个动点,过点P作☉M的切线,切点为Q,则PQ的最小值为.
8.(2024·盐城中考)如图,点C在以AB为直径的☉O上,过点C作☉O的切线l,过点A作AD⊥l,垂足为D,连接AC,BC.(1)求证:△ABC∽△ACD;(2)若AC=5,CD=4,求☉O的半径.【C层·素养挑战】9.如图,以线段AB为直径作☉O,交射线AC于点C,AD平分∠CAB交☉O于点D,过点D作直线DE⊥AC于点E,交AB的延长线于点F,连接BD并延长交AC于点M.(1)求证:直线DE是☉O的切线;(2)求证:AB=AM;(3)若ME=1,∠F=30°,求BF的长.参考答案【A层·基础过关】1.如图,AB是☉O的切线,A为切点,连接OA,OB,若∠B=20°,则∠AOB的度数为(B)A.80° B.70° C.60° D.50°2.如图,点P为☉O外一点,过点P作☉O的切线PA,PB,记切点为A,B,点C为☉O上一点,连接AC,BC.若∠ACB=62°,则∠APB等于(D)A.68° B.64° C.58° D.56°3.如图,点A是☉O外一点,AB,AC分别与☉O相切于点B,C,点D在BDC上.已知∠A=50°,则∠D的度数是65°.
4.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6.以点C为圆心,r为半径作圆,当所作的圆与斜边AB所在的直线相切时,r的值为
2455.如图,以四边形ABCD的对角线BD为直径作圆,圆心为O,过点A作AE⊥CD的延长线于点E,已知DA平分∠BDE.(1)求证:AE是☉O的切线;【解析】(1)如图,连接OA∵AE⊥CD∴∠DAE+∠ADE=90°.∵DA平分∠BDE∴∠ADE=∠ADO.又∵OA=OD∴∠OAD=∠ADO∴∠DAE+∠OAD=90°∴OA⊥AE∵OA是☉O的半径∴AE是☉O的切线.(2)若AE=4,CD=6,求☉O的半径和AD的长.【解析】(2)如图,取CD中点F,连接OF由题易得OF⊥CD于点F∴四边形AEFO是矩形.∵CD=6∴DF=FC=3.在Rt△OFD中,OF=AE=4∴OD=OF2+DF2=在Rt△AED中,AE=4,ED=EF-DF=OA-DF=OD-DF=5-3=2∴AD=42+2【B层·能力提升】6.(2024·包头中考)如图,四边形ABCD是☉O的内接四边形,点O在四边形ABCD内部,过点C作☉O的切线交AB的延长线于点P,连接OA,OB.若∠AOB=140°,∠BCP=35°,则∠ADC的度数为105°.
7.(2024·凉山州中考)如图,☉M的圆心为M(4,0),半径为2,P是直线y=x+4上的一个动点,过点P作☉M的切线,切点为Q,则PQ的最小值为278.(2024·盐城中考)如图,点C在以AB为直径的☉O上,过点C作☉O的切线l,过点A作AD⊥l,垂足为D,连接AC,BC.(1)求证:△ABC∽△ACD;【解析】(1)连接OC∵l是☉O的切线,∴OC⊥l∵AD⊥l,∴OC∥AD,∴∠CAD=∠ACO=∠CAB,∵AB为☉O的直径∴∠ADC=∠ACB=90°∴△ABC∽△ACD;(2)若AC=5,CD=4,求☉O的半径.【解析】(2)∵AC=5,CD=4,∠ADC=90°∴AD=A∵△ABC∽△ACD,∴ABAC=∴AB5=53,∴AB=253,∴☉O【C层·素养挑战】9.如图,以线段AB为直径作☉O,交射线AC于点C,AD平分∠CAB交☉O于点D,过点D作直线DE⊥AC于点E,交AB的延长线于点F,连接BD并延长交AC于点M.(1)求证:直线DE是☉O的切线;【解析】(1)连接OD,则OD=OA∴∠ODA=∠OAD∵AD平分∠CAB∴∠OAD=∠DAC∴∠ODA=∠DAC,∴OD∥AC∵DE⊥AC,∴∠ODF=∠AED=90°∵OD是☉O的半径,且DE⊥OD∴直线DE是☉O的切线.(2)求证:AB=AM;【解析】(2)∵线段AB是☉O的直径∴∠ADB=90°,∴∠ADM=180°-∠ADB=90°∴∠M+∠DAM=90°,∠ABM+∠DAB=90°∵∠DAM=∠DAB,∴∠M=∠ABM∴AB=AM.(3)若ME=1,∠F=30°,求BF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国薄膜电容挤压机数据监测研究报告
- 2024至2030年中国纯蒸汽发生器行业投资前景及策略咨询研究报告
- 2024至2030年中国皮革帽子数据监测研究报告
- 2024至2030年中国牙雕笔筒行业投资前景及策略咨询研究报告
- 2024至2030年中国方形杯托数据监测研究报告
- 2024至2030年中国圆板牙及丝锥数据监测研究报告
- 2024年无烟日活动
- 导游资格考试(全国)密押题库与答案解析导游基础知识分类模拟题中国古代建筑(四)-1
- 内蒙古呼和浩特市(2024年-2025年小学五年级语文)人教版综合练习(下学期)试卷及答案
- 湖南省常德市(2024年-2025年小学五年级语文)统编版小升初真题(下学期)试卷及答案
- 马克思主义基本原理概论智慧树知到答案章节测试2023年泰山学院
- 喷锡培训教程
- D500-D505 2016年合订本防雷与接地图集
- 马工程政治学概论思考题答案
- GB/T 18942.1-2003高聚物多孔弹性材料压缩应力应变特性的测定第1部分:低密度材料
- 电气接地电阻测试记录(通用)
- 基因治疗课件最新版
- 氟硅酸化学品安全技术说明书MSDS
- 《军事理论》课后复习题库大全-第一章:中国国防
- 《反对邪教崇尚科学》主题班会
- 机电产品国际招标投标政策介绍和案例讲解课件
评论
0/150
提交评论