期末真题必刷压轴60题(25个考点专练)(原卷版)_第1页
期末真题必刷压轴60题(25个考点专练)(原卷版)_第2页
期末真题必刷压轴60题(25个考点专练)(原卷版)_第3页
期末真题必刷压轴60题(25个考点专练)(原卷版)_第4页
期末真题必刷压轴60题(25个考点专练)(原卷版)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

期末真题必刷压轴60题(25个考点专练)一.根与系数的关系(共3小题)1.(2023春•环翠区期末)已知:关于x的方程x2+(8﹣4m)x+4m2=0.(1)若方程有两个相等的实数根,求m的值,并求出这时方程的根.(2)问:是否存在正数m,使方程的两个实数根的平方和等于136?若存在,请求出满足条件的m值;若不存在,请说明理由.2.(2022秋•安顺期末)设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1、x2,(1)若x12+x22=6,求m值;(2)求的最大值.3.(2022秋•宿城区期末)已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0.(1)求证:无论k取什么实数值,这个方程总有实数根;(2)能否找到一个实数k,使方程的两实数根互为相反数?若能找到,求出k的值;若不能,请说明理由.(3)当等腰三角形ABC的边长a=4,另两边的长b、c恰好是这个方程的两根时,求△ABC的周长.二.一元二次方程的应用(共3小题)4.(2023春•武胜县校级期末)如图,△ABC中,∠C=90°,BC=5厘米,AB=5厘米,点P从点A出发沿AC边以2厘米/秒的速度向终点C匀速移动,同时,点Q从点C出发沿CB边以1厘米/秒的速度向终点B匀速移动,P、Q两点运动几秒时,P、Q两点间的距离是2厘米?5.(2022秋•甘井子区校级期末)青山村种的水稻2010年平均每公顷产7200kg,2012年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率.6.(2022秋•惠阳区校级期末)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2.三.反比例函数与一次函数的交点问题(共3小题)7.(2022秋•阳曲县期末)如图,一次函数y=kx+b与反比例函数y=的图象交于A(﹣1,3),B(3,a)两点.(1)求一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(2)求S△AOB.8.(2022秋•莘县校级期末)如图,Rt△ABO的顶点A是双曲线与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(3)直接写出的解集.9.(2022秋•岳阳县期末)如图已知函数y=(k>0,x>0)的图象与一次函数y=mx+5(m<0)的图象相交不同的点A、B,过点A作AD⊥x轴于点D,连接AO,其中点A的横坐标为x0,△AOD的面积为2.(1)求k的值及x0=4时m的值;(2)记[x]表示为不超过x的最大整数,例如:[1.4]=1,[2]=2,设t=OD•DC,若﹣<m<﹣,求[m2•t]值.四.反比例函数的应用(共2小题)10.(2022秋•沙依巴克区校级期末)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?11.(2022秋•邯山区校级期末)家用电灭蚊器的发热部分使用了PTC发热材料,它的电阻R(kΩ)随温度t(℃)(在一定范围内)变化的大致图象如图所示.通电后,发热材料的温度在由室温10℃上升到30℃的过程中,电阻与温度成反比例关系,且在温度达到30℃时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升1℃,电阻增加kΩ.(1)求当10≤t≤30时,R和t之间的关系式;(2)求温度在30℃时电阻R的值;并求出t≥30时,R和t之间的关系式;(3)家用电灭蚊器在使用过程中,温度在什么范围内时,发热材料的电阻不超过6kΩ?五.抛物线与x轴的交点(共2小题)12.(2022秋•扶风县期末)二次函数y=ax2+bx+c的部分图象如图所示,其中图象与x轴交于点A(﹣1,0),与y轴交于点C(0,﹣5),且经过点D(3,﹣8).(1)求此二次函数的解析式;(2)将此二次函数的解析式写成y=a(x﹣h)2+k的形式,并直接写出顶点坐标以及它与x轴的另一个交点B的坐标.(3)利用以上信息解答下列问题:若关于x的一元二次方程ax2+bx+c﹣t=0(t为实数)在﹣1<x<3的范围内有解,则t的取值范围是.13.(2023春•鼓楼区校级期末)如图,抛物线y=ax2+bx﹣6交x轴于A(2,0),B(﹣6,0)两点,交y轴于点C,点Q为线段BC上的动点.(1)求抛物线的解析式;(2)求QA+QO的最小值;(3)过点Q作QP∥AC交抛物线的第三象限部分于点P,连接PA,PB,记△PAQ与△PBQ的面积分别为S1,S2,设S=S1+S2,当时,求点P的坐标.六.二次函数的应用(共2小题)14.(2022秋•大理州期末)某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)若某天的销售利润为2000元,为最大限度让利于顾客,则该商品销售价是多少?(2)求销售单价为多少元时,该商品每天的销售利润最大,请说明理由.15.(2022秋•华容区期末)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高.球第一次落地点后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式.(2)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取,)七.二次函数综合题(共19小题)16.(2022秋•绵阳期末)如图,抛物线的图象与x轴交于A,B两点,A(﹣1,0),对称轴是直线x=1,与y轴交于点C(0,).(1)求抛物线的解析式;(2)如图,矩形DEFG的边DE在x轴上,顶点F,G在x轴上方的抛物线上,设点D的横坐标为d,当矩形DEFG的周长取最大值时,求d,并求矩形DEFG的周长的最大值;(3)在(2)的结论下,直线DG上是否存在点M,使得∠GMF=2∠DEM,若存在,求出M的坐标;若不存在,请说明理由.17.(2022秋•德城区期末)如图1,直线y=﹣2x+2交x轴于点A,交y轴于点C,过A、C两点的抛物线与x轴的另一交点为B.(1)请直接写出该抛物线的函数解析式;(2)点D是第二象限抛物线上一点,设D点横坐标为m.①如图2,连接BD,CD,BC,求△BDC面积的最大值;②如图3,连接OD,将线段OD绕O点顺时针旋转90°,得到线段OE,过点E作EF∥x轴交直线AC于F.求线段EF的最大值及此时点D的坐标.18.(2022秋•大洼区期末)如图①,在平面直角坐标系中,抛物线P:y=﹣x2+bx+c的图象与x轴交于点A,B,与y轴交于点C,且图象与抛物线Q:y=x2+2x﹣3的图象关于原点中心对称.(1)求抛物线P的表达式;(2)连接BC,点D为线段BC上的一个动点,过点D作DE∥y轴,交抛物线P的图象于点E,求线段DE长度的最大值;(3)如图②,在抛物线P的对称轴上是否存在点M,使△MOB是等腰三角形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.19.(2022秋•大冶市期末)抛物线y=﹣x+4与坐标轴分别交于A,B,C三点,P是第一象限内抛物线上的一点.(1)直接写出A,B,C三点的坐标为A,B,C;(2)连接AP,CP,AC,若S△APC=2,求点P的坐标;(3)连接AP,BC,是否存在点P,使得∠PAB=∠ABC,若存在,求出点P的坐标,若不存在,请说明理由.20.(2022秋•滕州市期末)如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)若点E是线段BC上的一个动点,平行于y轴的直线EF交抛物线于点F,求△FBC面积的最大值;(3)设点P是(1)中抛物线上的一个动点,是否存在满足S△PAB=6的点P?如果存在,请求出点P的坐标;若不存在,请说明理由.21.(2022秋•望城区期末)如图①,抛物线y=ax2+x+c,与x轴交于A,B两点(A在B的左边),与y轴交于C点,顶点为E,其中,点A坐标为(﹣1,0),对称轴为x=2.(1)求此抛物线解析式;(2)在第四象限的抛物线上找一点F,使S△FBC=S△ACB,求点F的坐标;(3)如图②,点P是x轴上一点,点E与点H关于点P成中心对称,点B与点Q关于点P成中心对称,当以点Q,H,E为顶点三角形是直角三角形时,求P的坐标.22.(2022秋•雄县期末)已知抛物线G:y=﹣+kx+4(k为常数)与x轴交于点A,B(点A在点B的左侧),与y轴的正半轴交于点C.(1)当k=1时,如图所示:①抛物线G的对称轴为直线,点A的坐标为;②在x轴正半轴上从左到右有D,E两点,且DE=1,从点E向上作EF⊥x轴,且EF=2,在△DEF沿x轴左右平移时,若抛物线G与边DF(包括端点)有交点,求点F横坐标的最大值比最小值大多少?(2)当抛物线G的顶点P的纵坐标yP取得最小值时,求此时抛物线G的函数解析式;(3)当k<0,且x≥k时,抛物线G的最高点到直线l:y=7的距离为2,直接写出此时k的值.23.(2022秋•泉州期末)已知抛物线C1:y=ax2﹣2ax﹣1与x轴只有一个交点.(1)求抛物线的解析式;(2)将抛物线C1向上平移4个单位长度得到抛物线C2.抛物线C2与x轴交于A、B两点(其中A点在左侧,B点在右侧),与y轴交于点C,连结BC.D为第一象限内抛物线C2上的一个动点.①若△BOC的面积是△BDC面积的倍,求D的坐标;②抛物线C2的对称轴交x轴于点G,过D作DE⊥BC交BC于E,交x轴于F.当点F在线段OG上时,求的取值范围.24.(2022秋•雁塔区校级期末)如图,在平面直角坐标系中,二次函数y=﹣+bx+c的图象与y轴交于点A(0,8),与x轴交于B、C两点,其中点B的坐标是(﹣8,0),点P(m,n)为该二次函数在第二象限内图象上的动点,点D为(0,4),连接BD.(1)求该二次函数的表达式;(2)依题补图1:连接OP,过点P作PQ⊥x轴于点Q;当△OPQ和△OBD相似时,求m的值;(3)如图2,过点P作直线PQ∥BD,和x轴交点为Q,在点P沿着抛物线从点A到点B运动过程中,当PQ与抛物线只有一个交点时,求点Q的坐标.25.(2023春•福清市校级期末)已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;(3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QA﹣QO|的取值范围.26.(2022秋•丰都县期末)如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+4经过A(﹣1,3),与y轴交于点C,经过点C的直线与抛物线交于另一点E(6,m),点M为抛物线的顶点,抛物线的对称轴与x轴交于点D.(1)求直线CE的解析式;(2)如图2,点P为直线CE上方抛物线上一动点,连接PC,PE.当△PCE的面积最大时,求点P的坐标以及△PCE面积的最大值.(3)如图3,将点D右移一个单位到点N,连接AN,将(1)中抛物线沿射线NA平移得到新抛物线y′,y′经过点N,y′的顶点为点G,在新抛物线y′的对称轴上是否存在点H,使得△MGH是等腰三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.27.(2022秋•南川区期末)如图1,在平面直角坐标系中,二次函数y=ax2+bx﹣3(a≠0)的图象与x轴于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)当动点P运动到什么位置时,使四边形ACPB的面积最大,求出此时四边形ACPB的面积最大值和P的坐标;(3)如图2,点M在抛物线对称轴上,点N是平面内一点,是否存在这样的点M、N,使得以点M、N、A、C为顶点的四边形是菱形?若存在,请直接写出所有M点的坐标;若不存在,请说明理由.28.(2022秋•兴县期末)综合与探究如图1,已知抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A在点B左边),与y轴交于点C.点D(m,n)是线段BC上的动点,过点D作DE⊥x轴垂足为E.(1)请直接写出点A,B,C坐标以及直线BC的解析式;(2)若△ADE的面积为S,请求出S关于m的函数关系式,并求出当m的值为多少时,S的值最大?最大值为多少?(3)如图2,将△ADE以点D为中心,顺时针旋转90°得到△A'DE'(点A与点A′对应),则当A′恰好落在抛物线上时,求出此时点D的坐标.29.(2022秋•延边州期末)如图,抛物线y=﹣x2+bx+c经过点A(﹣1,0),点B(3,0),与y轴交于点C,点D在射线CO上运动,过点D作直线EF∥x轴,交抛物线于点E,F(点E在点F的左侧).(1)求该抛物线的解析式和对称轴;(2)若EF=2OC,求点E的坐标;(3)若抛物线的顶点关于直线EF的对称点为点P,当点P到x轴的距离等于1时,求出所有符合条件的线段EF的长;(4)以点D为旋转中心,将点B绕点D顺时针旋转90°得到点B′,直接写出点B′落在抛物线上时点D的坐标.30.(2023春•青秀区校级期末)如图1,抛物线y=ax2+x+c与x轴交于A(﹣2,0),B(4,0)两点,与y轴交于C.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上的—个动点,使△PBC的面积等于△ABC面积的,求点P的坐标;(3)过点C作直线l∥x轴,将抛物线在y轴左侧的部分沿直线l翻折,抛物线的其余部分保持不变,得到一个新图象(如图2),请你结合新图象解答:当直线y=﹣x+d与新图象只有一个公共点Q(m,n),且n≥﹣8时,求d的取值范围.31.(2023春•鼓楼区校级期末)在平面直角坐标系xOy中,已知抛物线y=ax2﹣2(a+1)x+a+2(a≠0).(1)当a=﹣时,求抛物线的对称轴及顶点坐标;(2)请直接写出二次函数图象的对称轴(用含a的代数式表示)及二次函数图象经过的定点坐标是.(3)若当1≤x≤5时,函数值有最大值为8,求二次函数的解析式;(4)已知点A(0,﹣3)、B(5,﹣3),若抛物线与线段AB只有一个公共点,请直接写出a的取值范围.32.(2023春•长沙期末)如图1,抛物线y=ax2+bx+3交x轴于点A(3,0)和点B(﹣1,0),交y轴于点C.(1)求抛物线的表达式;(2)若点D是直线AC上方抛物线上一动点,连接BC,AD和BD,BD交AC于点M,设△ADM的面积为S1,△BCM的面积为S2,当S1﹣S2=1时,求点D的坐标;(3)如图2,若点P是抛物线上一动点,过点P作PQ⊥x轴交直线AC于Q点,请问在y轴上是否存在点E,使以P,Q,E,C为顶点的四边形是菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由.33.(2023春•渝中区校级期末)如图1,在平面直角坐标系中,抛物线与x轴交于A、B两点,与y轴交于C点,其中A(﹣3,0),∠ACB=90°.(1)求该抛物线的函数解析式;(2)点P是直线AC上方抛物线上的一动点,过P作PM⊥AC于M点,在射线MA上取一点N,使得2MN=AC,连接PN,求△PMN面积的最大值及此时点P的坐标;(3)如图2,在(2)中△

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论