人教B版高中数学必修第一册第三章函数3.3函数的应用(一)课件_第1页
人教B版高中数学必修第一册第三章函数3.3函数的应用(一)课件_第2页
人教B版高中数学必修第一册第三章函数3.3函数的应用(一)课件_第3页
人教B版高中数学必修第一册第三章函数3.3函数的应用(一)课件_第4页
人教B版高中数学必修第一册第三章函数3.3函数的应用(一)课件_第5页
已阅读5页,还剩51页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.3函数的应用(一)【课程标准】在现实问题中,能利用函数构建模型,解决问题.教

点知识点一几类常见函数模型名称解析式条件一次函数模型y=kx+bk≠0反比例函数模型k≠0二次函数模型a≠0分段函数模型会利用分段函数解决与之相关的实际问题数学建模数学建模知识点二数学建模建模示例:(1)发现问题,提出问题.(2)分析问题,建立模型.(3)确定参数,计算求解.(4)验证结果,改进模型.状元随笔建立函数模型解决实际问题的基本思路基

测1.某厂日产手套总成本y(元)与手套日产量x(副)的关系式为y=5x+4000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为(

)A.200副B.400副C.600副D.800副解析:利润z=10x-y=10x-(5x+4000)≥0.解得x≥800.答案:D2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是(

)答案:C解析:距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C.3.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为(

)A.45.606万元B.45.6万元C.45.56万元D.45.51万元答案:B

4.某公司招聘员工,面试人数按拟录用人数分段计算,

其中,x代表拟录用人数,y代表面试人数.若应聘的面试人数为60,则该公司拟录用人数为________.25解析:令y=60,若4x=60,则x=15>10,不合题意;若2x+10=60,则x=25,满足题意;若1.5x=60,则x=40<100,不合题意.故拟录用人数为25人.题型1一次、二次函数模型

[经典例题]例1.某商人将进货单价为8元的某种商品按10元一个销售时,每天可卖出100个.现在他采用提高售价,减少进货量的办法增加利润,已知这种商品销售单价每涨1元,销售量就减少10个,问他将售价定为多少元时,才能使每天所赚的利润最大?并求出最大值.状元随笔可根据实际问题建立二次函数模型解析式.

【解析】

设每个提价x元(x≥0,x∈N),利润为y元.每天销售总额为(10+x)(100-10x)元,进货总额=8(100-10x)元,显然100-10x>0,即x<10,则y=(10+x)(100-10x)-8(100-10x)=(2+x)(100-10x)=-10(x-4)2+360(0≤x<10,x∈N).当x=4时,y取得最大值,此时销售单价应为14元,最大利润为360元.即当售价定为14元时,可使每天所赚的利润最大,最大利润为360元.方法归纳1.利用一次函数模型解决实际问题时,需注意以下两点:(1)待定系数法是求一次函数解析式的常用方法.(2)当一次项系数为正时,一次函数为增函数;当一次项系数为负时,一次函数为减函数.2.二次函数模型主要用来解决实际问题中的利润最大、用料最省等问题,是高考考查的重点.解题时,建立二次函数解析式后,可以利用配方法、判别式法、换元法、函数的单调性等来求函数的最值,从而解决实际问题.跟踪训练1

据市场分析,烟台某海鲜加工公司,当月产量在10吨至25吨时,月生产总成本y(万元)可以看成月产量x(吨)的二次函数;当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元,为二次函数的顶点.(1)写出月总成本y(万元)关于月产量x(吨)的函数关系;(2)已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润?

方法归纳(1)分段函数是刻画现实问题的重要模型,由自变量变化所遵循规律的不同决定的,函数的分段表示是建模的关键.(2)求分段函数值域或最值时,应对分段函数中的每段函数分别求出值域或最值,然后再由各段函数的值域或最值确定本函数的值域或最值.分类讨论思想是本类问题的主要思想方法.跟踪训练2

为了迎接世博会,某旅游区提倡低碳生活,在景区提供自行车出租.该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(日净收入=一日出租自行车的总收入-管理费用).(1)求函数y=f(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使日净收入最多?

状元随笔(1)利用函数关系建立各个取值范围内的净收入与日租金的关系式,写出分段函数,注意实际问题中自变量的取值范围.(2)利用一次函数的单调性及二次函数的性质分别求分段函数各段上的最大值,取其最大的即可.

题型3基本不等式的应用

[数学运算、数学建模]

例3.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?

方法归纳基本不等式解决实际问题的关注点在应用基本不等式解决实际问题时,应注意如下的思路和方法:①先理解题意,设出变量,一般把要求最值的量定为函数;②建立相应的函数关系,把实际问题抽象成函数的最大值或最小值问题;③在定义域内,求出函数的最大值或最小值;④根据实际背景写出答案.

练1.学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数y与听课时间x(单位:分钟)之间的关系满足如图所示的图象,当x∈(0,12]时,图象是二次函数图象的一部分,其中顶点A(10,80),过点B(12,78);当x∈[12,40]时,图象是线段BC,其中C(40,50).根据专家研究,当注意力指数大于62时,学习效果最佳.要使得学生学习效果最佳,则教师安排核心内容的时间段为___________.(写成区间形式)(4,28)

2.提高过江大桥的车辆通行能力可改善整个城市的交通状况.一般情况下,大桥上的车流速度v(单位:千米/时)是关于车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到280辆/千米时,会造成堵塞,此时车流速度为0;当车流密度不超过40辆/千米时,车流速度为60千米/时.研究表明:当40≤x≤280时,车流速度v是车流密度x的一次函数.(1)当0≤x≤280时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)f(x)=x·v(x)可以达到最大,并求出最大值.

1.(5分)某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售量时的收入是(

)A.310元B.300元C.290元D.280元答案:B

2.(5分)据调查,某自行车存车处在某星期日的存车量为2000辆次,其中变速车存车费是每辆一次0.8元,普通车存车费是每辆一次0.5元,若普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式是(

)A.y=0.3x+800(0≤x≤2000,x∈N)B.y=0.3x+1600(0≤x≤2000,x∈N)C.y=-0.3x+800(0≤x≤2000,x∈N)D.y=-0.3x+1600(0≤x≤2000,x∈N)答案:D解析:由题意知,若普通车存车数为x辆次,则变速车存车数为(2000-x)辆次,则总收入y=0.5x+(2000-x)×0.8=0.5x+1600-0.8x=-0.3x+1600(0≤x≤2000,x∈N).3.(5分)已知从甲地到乙地通话mmin的电话费(单位:元)由f(m)=1.06×(0.5×[m]+1)确定,其中m>0,[m]表示大于或等于m的最小整数(如[3]=3,[3.8]=4,[3.1]=4).若从甲地到乙地的某次通话时间为5.5min,则电话费为(

)A.3.71元B.3.97元

C.4.24元D.4.77元解析:由题设知f(5.5)=1.06×(0.5×[5.5]+1)=1.06×(0.5×6+1)=4.24(元),故选C.答案:C

答案:B

5.(5分)某电脑公司2023年的各项经营收入中,经营电脑配件的收入为400万元,占全年经营总收入的40%.该公司预计2025年经营总收入要达到1690万元,且计划从2023年到2025年,每年经营总收入的年增长率相同,2024年预计经营总收入为________万元.

答案:1300

答案:18

答案:60和16

8.(13分)车管站在某个星期日保管的自行车和电动车共有3500辆次,其中电动车保管费是每辆一次0.5元,自行车保管费是每辆一次0.3元.(1)若设停放的自行车的辆次为x,总的保管费收入为y元,试写出y关于x的函数关系式;(2)若估计前来停放的3500辆次自行车和电动车中,电动车的辆次数不小于25%,但不大于40%,试求该车管站这个星期日收入保管费总数的范围.解析:(1)由题意得y=0.3x+0.5(3500-x)=-0.2x+1750(x∈N*且0≤x≤3500).(2)若电动车的辆次数不小于25%,但不大于40%,则3500×(1-40%)≤x≤3500×(1-25%),即2100≤x≤2625且x∈N*,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论