




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FeaturesDigitalVisualEffectsYung-YuChuangwithslidesbyTrevorDarrell
CordeliaSchmid,DavidLowe,DaryaFrolova,DenisSimakov,RobertCollinsandJiwonKimOutlineFeaturesHarriscornerdetectorSIFTExtensionsApplicationsFeaturesFeaturesAlsoknownasinterestingpoints,salientpointsorkeypoints.Pointsthatyoucaneasilypointouttheircorrespondencesinmultipleimagesusingonlylocalinformation.?DesiredpropertiesforfeaturesDistinctive:asinglefeaturecanbecorrectlymatchedwithhighprobability.Invariant:invarianttoscale,rotation,affine,illuminationandnoiseforrobustmatchingacrossasubstantialrangeofaffinedistortion,viewpointchangeandsoon.Thatis,itisrepeatable.ApplicationsObjectorscenerecognitionStructurefrommotionStereoMotiontracking…ComponentsFeaturedetectionlocateswheretheyareFeaturedescriptiondescribeswhattheyareFeaturematchingdecideswhethertwoarethesameoneHarriscornerdetectorMoraveccornerdetector(1980)WeshouldeasilyrecognizethepointbylookingthroughasmallwindowShiftingawindowinany
directionshouldgivealargechangeinintensityMoraveccornerdetectorflatMoraveccornerdetectorflatMoraveccornerdetectorflatedgeMoraveccornerdetectorflatedgecornerisolatedpointMoraveccornerdetectorChangeofintensityfortheshift[u,v]:windowfunctionFourshifts:(u,v)=(1,0),(1,1),(0,1),(-1,1)Lookforlocalmaximainmin{E}intensityshiftedintensityProblemsofMoravecdetectorNoisyresponseduetoabinarywindowfunctionOnlyasetofshiftsatevery45degreeisconsideredOnlyminimumofEistakenintoaccountHarriscornerdetector(1988)solvestheseproblems.HarriscornerdetectorNoisyresponseduetoabinarywindowfunctionUseaGaussianfunction
HarriscornerdetectorOnlyasetofshiftsatevery45degreeisconsideredConsiderallsmallshiftsbyTaylor’sexpansionHarriscornerdetectorOnlyasetofshiftsatevery45degreeisconsideredConsiderallsmallshiftsbyTaylor’sexpansionHarriscornerdetectorEquivalently,forsmallshifts[u,v]wehaveabilinearapproximation:,whereMisa22matrixcomputedfromimagederivatives:Harriscornerdetector(matrixform)HarriscornerdetectorOnlyminimumofEistakenintoaccountAnewcornermeasurementbyinvestigatingtheshapeoftheerrorfunctionrepresentsaquadraticfunction;Thus,wecananalyzeE’sshapebylookingatthepropertyofMHarriscornerdetectorHigh-levelidea:whatshapeoftheerrorfunctionwillwepreferforfeatures?flatedgecornerQuadraticformsQuadraticform(homogeneouspolynomialofdegreetwo)ofnvariablesxiExamples=SymmetricmatricesQuadraticformscanberepresentedbyarealsymmetricmatrixAwhereEigenvaluesofsymmetricmatricesBradOsgoodEigenvectorsofsymmetricmatricesEigenvectorsofsymmetricmatricesHarriscornerdetectorIntensitychangeinshiftingwindow:eigenvalueanalysis
1,
2–eigenvaluesofMdirectionoftheslowestchangedirectionofthefastestchange(
max)-1/2(
min)-1/2EllipseE(u,v)=constVisualizequadraticfunctionsVisualizequadraticfunctionsVisualizequadraticfunctionsVisualizequadraticfunctionsHarriscornerdetector
1
2Corner
1and
2arelarge,
1~
2;
Eincreasesinalldirections
1and
2aresmall;
Eisalmostconstantinalldirectionsedge
1>>
2edge
2>>
1flatClassificationofimagepointsusingeigenvaluesofM:HarriscornerdetectorMeasureofcornerresponse:(k–empiricalconstant,k=0.04-0.06)Onlyforreference,youdonotneedthemtocomputeRHarriscornerdetectorAnotherviewAnotherviewAnotherviewSummaryofHarrisdetectorComputexandyderivativesofimageComputeproductsofderivativesateverypixelComputethesumsoftheproductsofderivativesateachpixelSummaryofHarrisdetectorDefinethematrixateachpixelComputetheresponseofthedetectorateachpixelThresholdonvalueofR;computenonmaxsuppression.Harriscornerdetector(input)CornerresponseRThresholdonRLocalmaximumofRHarriscornerdetectorHarrisdetector:summaryAverageintensitychangeindirection[u,v]canbeexpressedasabilinearform:
DescribeapointintermsofeigenvaluesofM:
measureofcornerresponse
Agood(corner)pointshouldhavealargeintensitychangeinalldirections,i.e.RshouldbelargepositiveNowweknowwherefeaturesareBut,howtomatchthem?Whatisthedescriptorforafeature?Thesimplestsolutionistheintensitiesofitsspatialneighbors.Thismightnotberobusttobrightnesschangeorsmallshift/rotation.()123456789123456789Harrisdetector:somepropertiesPartialinvariancetoaffineintensitychange
Onlyderivativesareused=>invariancetointensityshiftI
I
+
b
Intensityscale:I
a
IRx
(imagecoordinate)thresholdRx
(imagecoordinate)HarrisDetector:SomePropertiesRotationinvarianceEllipserotatesbutitsshape(i.e.eigenvalues)remainsthesameCornerresponseRisinvarianttoimagerotationHarrisDetectorisrotationinvariantRepeatabilityrate:#correspondences
#possiblecorrespondencesHarrisDetector:SomePropertiesBut:notinvarianttoimagescale!AllpointswillbeclassifiedasedgesCorner!Harrisdetector:somepropertiesQualityofHarrisdetectorfordifferentscalechangesRepeatabilityrate:#correspondences
#possiblecorrespondencesScaleinvariantdetectionConsiderregions(e.g.circles)ofdifferentsizesaroundapointRegionsofcorrespondingsizeswilllookthesameinbothimagesScaleinvariantdetectionTheproblem:howdowechoosecorrespondingcirclesindependentlyineachimage?ApertureproblemSIFT
(ScaleInvariantFeatureTransform)SIFTSIFTisancarefullydesignedprocedurewithempiricallydeterminedparametersfortheinvariantanddistinctivefeatures.SIFTstages:Scale-spaceextremadetectionKeypointlocalizationOrientationassignmentKeypointdescriptor()localdescriptordetectordescriptorA500x500imagegivesabout2000features1.Detectionofscale-spaceextremaForscaleinvariance,searchforstablefeaturesacrossallpossiblescalesusingacontinuousfunctionofscale,scalespace.SIFTusesDoGfilterforscalespacebecauseitisefficientandasstableasscale-normalizedLaplacianofGaussian.DoGfilteringConvolutionwithavariable-scaleGaussianDifference-of-Gaussian(DoG)filterConvolutionwiththeDoGfilterScalespace
doublesforthenextoctaveK=2(1/s)Dividingintooctaveisforefficiencyonly.Detectionofscale-spaceextremaKeypointlocalizationXisselectedifitislargerorsmallerthanall26neighborsDecidescalesamplingfrequencyItisimpossibletosamplethewholespace,tradeoffefficiencywithcompleteness.Decidethebestsamplingfrequencybyexperimentingon32realimagesubjecttosynthetictransformations.(rotation,scaling,affinestretch,brightnessandcontrastchange,addingnoise…)DecidescalesamplingfrequencyDecidescalesamplingfrequencys=3isthebest,forlargers,toomanyunstablefeaturesfordetector,repeatabilityfordescriptor,distinctivenessPre-smoothing=1.6,plusadoubleexpansionScaleinvariance2.AccuratekeypointlocalizationRejectpointswithlowcontrast(flat)andpoorlylocalizedalonganedge(edge)Fita3Dquadraticfunctionforsub-pixelmaxima1650-1+12.AccuratekeypointlocalizationRejectpointswithlowcontrast(flat)andpoorlylocalizedalonganedge(edge)Fita3Dquadraticfunctionforsub-pixelmaxima1650-1+12.AccuratekeypointlocalizationTaylorseriesofseveralvariablesTwovariablesAccuratekeypointlocalizationTaylorexpansioninamatrixform,xisavector,fmapsxtoascalarHessianmatrix(oftensymmetric)gradient2Dillustration2Dexample-17-1-17777-9-9DerivationofmatrixformDerivationofmatrixformDerivationofmatrixformDerivationofmatrixformDerivationofmatrixformAccuratekeypointlocalizationxisa3-vectorChangesamplepointifoffsetislargerthan0.5Throwoutlowcontrast(<0.03)AccuratekeypointlocalizationThrowoutlowcontrastEliminatingedgeresponsesr=10LetKeepthepointswithHessianmatrixatkeypointlocationMaximainDRemovelowcontrastandedgesKeypointdetector233x89832extrema729aftercon-trastfiltering536aftercur-vaturefiltering3.OrientationassignmentByassigningaconsistentorientation,thekeypointdescriptorcanbeorientationinvariant.Forakeypoint,ListheGaussian-smoothedimagewiththeclosestscale,orientationhistogram(36bins)(Lx,Ly)mθOrientationassignmentOrientationassignmentOrientationassignmentOrientationassignmentσ=1.5*scaleofthekeypointOrientationassignmentOrientationassignmentOrientationassignmentaccuratepeakpositionisdeterminedbyfittingOrientationassignment36-binorientationhistogramover360°,weightedbymand1.5*scalefalloffPeakistheorientationLocalpeakwithin80%createsmultipleorientationsAbout15%hasmultipleorientationsandtheycontributealottostabilitySIFTdescriptor4.LocalimagedescriptorThresholdedimagegradientsaresampledover16x16arrayoflocationsinscalespaceCreatearrayoforientationhistograms(w.r.t.keyorientation)8orientationsx4x4histogramarray=128dimensionsNormalized,clipvalueslargerthan0.2,renormalizeσ=0.5*widthWhy4x4x8?SensitivitytoaffinechangeFeaturematchingforafeaturex,hefoundtheclosestfeaturex1
andthesecondclosestfeaturex2.Ifthedistanceratioofd(x,x1)andd(x,x1)issmallerthan0.8,thenitisacceptedasamatch.SIFTflowMaximainDRemovelowcontrastRemoveedgesSIFTdescriptorEstimatedrotationComputedaffinetransformationfromrotatedimagetooriginalimage:0.7060-0.7052128.42300.70570.7100-128.9491001.0000Actualtransformationfromrotatedimagetooriginalimage:0.7071-0.7071128.69340.70710.7071-128.6934001.0000SIFTextensionsPCAPCA-SIFTOnlychangestep4Pre-computeaneigen-spaceforlocalgradientpatchesofsize41x412x39x39=3042elementsOnlykeep20componentsAmorecompactdescriptorGLOH(Gradientlocation-orientationhistogram)17locationbins16orientationbinsAnalyzethe17x16=272-deigen-space,keep128componentsSIFTisstillconsideredthebest.SIFTMulti-ScaleOrientedPatchesSimplerthanSIFT.Designedforimagematching.[Brown,Szeliski,Winder,CVPR’2005]FeaturedetectorMulti-scaleHarriscornersOrientationfromblurredgradientGeometricallyinvarianttorotationFeaturedescriptorBias/gainnormalizedsamplingoflocalpatch(8x8)PhotometricallyinvarianttoaffinechangesinintensityMulti-ScaleHarriscornerdetectorImagestitchingismostlyconcernedwithmatchingimagesthathavethesamescale,sosub-octavepyramidmightnotbenecessary.Multi-ScaleHarriscornerdetectorsmootherversionofgradients
Cornerdetectionfunction:Picklocalmaximaof3x3andlargerthan10KeypointdetectionfunctionExperimentsshowroughlythesameperformance.Non-maximalsuppressionRestrictthemaximalnumberofinterestpoints,butalsowantthemspatiallywelldistributedOnlyretainmaximumsinaneighborhoodofradiusr.Sortthembystrength,decreasingrfrominfinityuntilthenumberofkeypoints(500)issatisfied.Non-maximalsuppressionSub-pixelrefinementOrientationassignmentOrientation=blurredgradientDescriptorVectorRotationInvariantFrameScale-spaceposition(x,y,s)+orientation(
)MSOPdescriptorvector8x8orientedpatchsampledat5xscale.SeeTRfordetails.Sampledfromwithspacing=58pixels40pixelsMSOPdescriptorvector8x8orientedpatchsampledat5xscale.SeeTRfordetails.Bias/gainnormalisation:I’=(I–
)/
Wavelettransform8pixels40pixelsDetectionsatmultiplescalesSummaryMulti-scaleHarriscornerdetectorSub-pixelrefinementOrientationassignmentbygradientsBlurredintensitypatchasdescriptorFeaturematchingExhaustivesearchforeachfeatureinoneimage,lookatalltheotherfeaturesintheotherimage(s)Hashingcomputeashortdescriptorfromeachfeaturevector,orhashlongerdescriptors(randomly)Nearestneighbortechniquesk-treesandtheirvariants(BestBinFirst)Wavelet-basedhashingComputeashort(3-vector)descriptorfroman8x8patchusingaHaar“wavelet”Quantizeeachvalueinto10(overlapping)bins(103totalentries)[Brown,Szeliski,Winder,CVPR’2005]Nearestneighbortechniquesk-Dtree
andBestBin
First
(BBF)IndexingWithoutInvariantsin3DObjectRecognition,BeisandLowe,PAMI’99ApplicationsReco
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度股份代持与股权激励实施方案协议
- 2025年度足疗中心员工工资保底与员工满意度调查协议
- 房产证抵押贷款额度调整协议(2025年度)
- 2025年度食品包装设计及委托加工合同
- 二零二五年度储蓄存款业务创新激励机制合同
- 二零二五年度银行账户监管协议:银行账户资金监管与网络安全保障合同
- 二零二五年度智能物流件代发合作协议
- 二零二五年度体育赛事运营补充协议范本
- 二零二五年度茶饮连锁品牌全国代理权独家协议
- 幼儿园学生人身安全赔偿协议范本2025
- 2025年三八妇女节校长致辞-以柔韧破万钧以丹心育桃李
- 2025年浙江省建筑安全员C证考试(专职安全员)题库及答案
- 2025年健身教练合同协议样本
- 2025年常州工业职业技术学院单招职业技能测试题库(培优)
- 2025年湖南商务职业技术学院单招职业技能测试题库必考题
- 中储粮黑龙江分公司招聘考试试卷2023
- 化学实验室安全职责分配
- 1.2 读懂彼此的心 第二课时 课件 2024-2025学年五年级下册道德与法治 统编版
- 2018-2022年北京市中考真题数学试题汇编:选择压轴(第8题)
- 2025年哈尔滨铁道职业技术学院高职单招语文2018-2024历年参考题库频考点含答案解析
- 2025年贵州黔源电力股份有限公司招聘笔试参考题库含答案解析
评论
0/150
提交评论