4.2.1 旋转的定义与性质 同步练习_第1页
4.2.1 旋转的定义与性质 同步练习_第2页
4.2.1 旋转的定义与性质 同步练习_第3页
4.2.1 旋转的定义与性质 同步练习_第4页
4.2.1 旋转的定义与性质 同步练习_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四章图形的平移与旋转2图形的旋转第1课时旋转的定义与性质基础过关全练知识点1旋转的相关概念1.以下生活现象中,属于旋转变换的是()A.钟表的指针和钟摆的运动 B.站在电梯上的人的运动C.坐在火车上睡觉 D.地下水位线逐年下降2.如图,在平面内将五角星绕其中心旋转180°后所得到的图案是()3.下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,则第2023个图案与第1个至第4个中的第__________个箭头方向相同(填序号).知识点2旋转的性质4如图,将△ABC绕点A顺时针旋转到△ADE的位置,且点D恰好落在AC边上,则下列结论不一定成立的是()A.∠ABC=∠ADE B.BC=DE C.BC∥AE D.AC平分∠BAE第4题图第5题图5如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到.△A'BA.50° B.70° C.110° D.120°6.如图,△ABC是等腰直角三角形,DE是过点C的直线,BD⊥DE,AE⊥DE,则△BDC通过下列变换能与△ACE重合的是()A.绕点C逆时针旋转90度 B.沿AB的垂直平分线翻折C.绕AB的中点M顺时针旋转90度 D.沿DE方向平移第6题图第7题图7.如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连接EF.若AB=4,AC=3,且α+β=∠B,则EF=____________.8.如图,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD.(1)求证:△ABC≌△ADE;(2)如果∠AEC=75°,将△ADE绕着点A旋转一个锐角后与△ABC重合,求这个旋转角的大小.能力提升全练1.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1,将△ABC绕点C顺时针旋转得到△A'B'C,其中点A'与点A是对应点,点B'与点B是对应点.若点B'恰好落在AB边上,则点A到直线A'C的距离等于()A.33 B.3 C.1.5第1题图第2题图2.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,△A'B'C由△ABC绕点C顺时针旋转得到,其中点A'与点A、点B'与点B是对应点,连接AB',且A,B',A'在同一条直线上,则AA'的长为()A.3 B.6 C.4 D.83.如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.若DF=3,则BE的长为()A.2 B.32 C.1第3题图第4题图4.如图,已知在△ABC中,BA=BC=10,AC=12,将△ABC绕点A逆时针旋转得到△AB'C'.点D是边AC的中点,点E为边BC上的动点,在△ABC绕点A逆时针旋转的过程中,点E的对应点是点E',则线段DE'长度的最大值与最小值的差是()A.365 B.5455.如图,在△ABC中,∠BAC=70°,将△ABC绕点A逆时针旋转,得到△AB'C',连接C'素养探究全练6.在△ABC中,AB=AC,∠BAC=100°,D是BC的中点.在射线AD上任意取一点P,连接PB.将线段PB绕点P逆时针方向旋转80°,点B的对应点是点E,连接BE,CE.(1)如图(1),当点E落在射线AD上时,①∠BEP=_____________°;②直线CE与直线AB的位置关系是___________.(2)如图(2),当点E落在射线AD的左侧时,试判断直线CE与直线AB的位置关系,并证明你的结论.

第四章图形的平移与旋转2图形的旋转第1课时旋转的定义与性质参考答案基础过关全练1.A【解析】钟表的指针和钟摆的运动都是旋转变换;站在电梯上的人的运动、坐在火车上睡觉、地下水位线逐年下降都属于平移现象.故选A.2.C【解析】∵将五角星绕其中心旋转180°,∴题图中阴影部分的三角形应竖直向下.故选C.3.3【解析】根据题图可以看出4个图案为一个循环,2023÷4=505⋯⋯3,故第2023个图案与第3个图案箭头方向相同,故答案为3.4.C【解析】∵将△ABC绕点A顺时针旋转到△ADE的位置,且点D恰好落在AC边上,∴∠ABC=∠ADE,BC=DE,∠BAC=∠CAE,∴AC平分∠BAE.结论BC∥AE不一定成立.故选C.5.D【解析】∵∠ACB=90°,∠ABC=40°,∴∠CAB=90°-∠ABC=90°-40°=50°.∵将△ABC绕点B逆时针旋转得到△A'BC',使点C的对应点C'恰好落在边AB上,∴∠A'BA=∠ABC=40°,A'B=AB,∴∠BAA'=∠BA'A=1∴∠CAA6.C【解析】∵BD⊥DE,AE⊥DE,∴∠BDC=∠CEA=90°.又∵∠ACB=90°,∴∠BCD=∠CAE(同角的余角相等),∴在△BDC与△CEA中,∠BDC=∠CEA,∠BCD=∠CAE,∴∴BD=CE,CD=AE.绕点C旋转后,△BDC与△ACE不重合,故选项A不符合题意;△BDC与△ACE不关于AB的垂直平分线对称,则沿AB的垂直平分线翻折后不重合,故选项B不符合题意;因为△ABC是等腰直角三角形,M为AB的中点,所以CM⊥AB,所以绕中点M顺时针旋转90°,△BDC与△CEA重合,故选项C符合题意;先沿DE方向平移△BDC,使点D与点E重合后,再将平移后的三角形绕点E顺时针旋转90°,则△BDC与△CEA重合,故选项D不符合题意.故选C.7.5【解析】由旋转的性质可得AE=AB=4,AC=AF=3.∵∠B+∠BAC=90°,且α+β=∠B,∴∠BAC+α+β=90°,∴∠EAF=90°.在Rt△AEF中,由勾股定理得EF=5,故答案为5.8.(1)【证明】在△ABC和△ADE中,∠BAC=∠DAE,AB=AD,(2)【解】∵△ABC≌△ADE,∴AC=AE,∴∠C=∠AEC=75°,∴∠CAE=180°-∠C-∠AEC=30°,∴△ADE绕着点A逆时针旋转30°后与△ABC重合,∴这个旋转角为30°.能力提升全练1.C【解析】连接AA',如图.∵∠ACB=90°,∠BAC=30°,BC=1,∴AB=2,∠B=60∵将△ABC绕点C顺时针旋转得到△A'B'C,∴CA=CA',CB=C∴△CBB'为等边三角形,∴过点A作AD⊥A'C于点D,∴CD=1∴点A到直线A'C的距离为1.5.故选C.2.A【解析】∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∴AB=2BC=2×1=2.∵△ABC绕点C顺时针旋转得到△A'B'C,∴3.A【解析】由题意可得,△ADF≌△ABG,∴DF=BG=3,∠DAF=∠BAG.∵∠DAB=90°,∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠BAG+∠EAB=45°,∴∠EAF=∠EAG.在△EAG和△EAF中AG=AF,∠EAG=∠EAF,∴GE=FE.设BE=x,则GE=BG+BE=3+x,CE=6-x,∴EF=3+x.∵CD=6,DF=3,∴CF=3.在Rt△ECF中,∠C=90°,CE²+CF²=EF²,即(6-x)²+3²=(3+x)²,解得x=2,即BE=2.故选A.4.C【解析】如图,连接BD,作AH⊥B'C'于H,B'DAB2−AD2=105.40°【解析】∵△ABC绕点A逆时针旋转得到△A∴∠A∴∠CAC素养探究全练6.【解】(1)①由旋转性质得,PB=PE,∴∠PEB=∠PBE.∵∠BPE=80∘,∴∠BEP=12(2)CE∥AB.证明如下:如图,连接CP并延长交BE于点F.∵PB=PE,∠BPE=80°,∴∠PBE=∠BEP=50°.∵AB=AC,∠BAC=100°,∴∠ABC=∠ACB=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论