版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考模拟试题PAGEPAGE1郑州市2023年高中毕业年级第一次质量预测理科数学试题卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合.则()A B. C. D.2.已知是虚数单位,若复数的实部为1,,则复数的虚部为()A.或 B.或 C.或1 D.或3.已知双曲线()的离心率为,则该双曲线的渐近线方程为A B. C. D.4.欧拉函数的函数值等于所有不超过正整数,且与互素(也称互质)的正整数的个数,例如,,.则()A.数列单调 B.C.数列是等比数列 D.5.若实数,满足约束条件,则的()A.最大值为4 B.最小值为4 C.最大值为5 D.最小值为56.设等差数列的前项和为,,,则公差的取值范围是()A. B. C. D.7.记函数的最小正周期为.若,且的图象的一条对称轴为,关于该函数有下列四个说法:①;②;③在上单调递增;④为了得到的图象,只需将的图象向右平移个单位长度.以上四个说法中,正确的个数为()A.1 B.2 C.3 D.48.河南博物院主展馆的主体建筑以元代登封古观星台为原型,经艺术夸张演绎成“戴冠的金字塔”造型,冠部为“方斗”形,上扬下覆,取上承“甘露”、下纳“地气”之意.冠部以及冠部下方均可视为正四棱台.已知一个“方斗”的上底面与下底面的面积之比为,高为2,体积为,则该“方斗”的侧面积为()A24 B.12 C. D.9.记的内角,,的对边分别为,,,已知角,,则角()A. B. C. D.10.在如图所示的实验装置中,两个正方形框架,的边长都为1,且它们所在的平面互相垂直.活动弹子,分别在正方形对角线和上移动,且和的长度保持相等,记.则下列结论错误的是()A.该模型外接球的半径为 B.当时,的长度最小C.异面直线与所成的角为60° D.平面11.已知直线与抛物线交于,两点,为坐标原点,,交于点,点的坐标为,则的值为()A. B.2 C. D.312.已知函数定义域为,为偶函数,为奇函数,且满足,则()A. B.0 C.2 D.2023二、填空题(每题5分,满分20分.)13.的展开式中的项系数为___________;14.已知四边形是边长为2的正方形,若,且为的中点,则______.15.经过点以及圆与交点的圆的方程为______.16.已知函数,若有两个不同的极值点,且,则的取值范围为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:每题12分,共60分.17.已知数列满足.(1)求数列的通项公式;(2)若,求数列前项和.18.如图,正四棱锥的底面边长和高均为2,,分别为,的中点.(1)若点是线段上的点,且,判断点是否在平面内,并证明你的结论;(2)求直线与平面所成角的正弦值.19.世界杯足球赛淘汰赛阶段比赛规则为:90分钟内进球多的球队取胜,如果参赛双方在90分钟内无法决出胜负(踢成平局),将进行30分钟的加时赛,若加时赛阶段两队仍未分出胜负,则进入“点球大战”.点球大战的规则如下:①两队各派5名队员,双方轮流踢点球,累计进球个数多者胜;②如果在踢满5球前,一队进球数已多于另一队踢5球可能踢中的球数,则该队胜出,譬如:第4轮结束时,双方进球数比,则不需踢第5轮了;③若前5轮点球大战中双方进球数持平,则采用“突然死亡法”决出胜负,即从第6轮起,双方每轮各派1人踢点球,若均进球或均不进球,则继续下一轮.直到出现一方进球另一方不进球的情况,进球方胜.现有甲乙两队在淘汰赛中相遇,双方势均力敌,120分钟(含加时赛)仍未分出胜负,须采用“点球大战”决定胜负.设甲队每名球员射进的概率为,乙队每名球员射进的概率为.每轮点球结果互不影响.(1)设甲队踢了5球,为射进点球的个数,求的分布列与期望;(2)若每轮点球都由甲队先踢,求在第四轮点球结束时,乙队进了4个球并刚好胜出的概率.20.已知椭圆:的离心率为,且过点.(1)求椭圆的方程;(2)设不过点的直线与椭圆交于,两点,关于原点的对称点为,记直线,,的斜率分别为,,,若,证明直线的斜率为定值.21.已知函数,.(1)求的单调区间与最值;(2)若存在,使得不等式成立,求实数的取值范围.(二)选考题:共10分.请考生在第22,23题中任选一题作答,在答题卷上将所选题号涂黑,如果多做,则按所做的第一题计分.22.在直角坐标系中,曲线的参数方程为(为参数,),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)已知点,若直线与曲线交于A,两点,求的值.23.已知.(1)求不等式的解集;(2)若的最小值为,正实数,,满足,求证:.
高考模拟试题PAGEPAGE1郑州市2023年高中毕业年级第一次质量预测理科数学试题卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合.则()A B. C. D.2.已知是虚数单位,若复数的实部为1,,则复数的虚部为()A.或 B.或 C.或1 D.或3.已知双曲线()的离心率为,则该双曲线的渐近线方程为A B. C. D.4.欧拉函数的函数值等于所有不超过正整数,且与互素(也称互质)的正整数的个数,例如,,.则()A.数列单调 B.C.数列是等比数列 D.5.若实数,满足约束条件,则的()A.最大值为4 B.最小值为4 C.最大值为5 D.最小值为56.设等差数列的前项和为,,,则公差的取值范围是()A. B. C. D.7.记函数的最小正周期为.若,且的图象的一条对称轴为,关于该函数有下列四个说法:①;②;③在上单调递增;④为了得到的图象,只需将的图象向右平移个单位长度.以上四个说法中,正确的个数为()A.1 B.2 C.3 D.48.河南博物院主展馆的主体建筑以元代登封古观星台为原型,经艺术夸张演绎成“戴冠的金字塔”造型,冠部为“方斗”形,上扬下覆,取上承“甘露”、下纳“地气”之意.冠部以及冠部下方均可视为正四棱台.已知一个“方斗”的上底面与下底面的面积之比为,高为2,体积为,则该“方斗”的侧面积为()A24 B.12 C. D.9.记的内角,,的对边分别为,,,已知角,,则角()A. B. C. D.10.在如图所示的实验装置中,两个正方形框架,的边长都为1,且它们所在的平面互相垂直.活动弹子,分别在正方形对角线和上移动,且和的长度保持相等,记.则下列结论错误的是()A.该模型外接球的半径为 B.当时,的长度最小C.异面直线与所成的角为60° D.平面11.已知直线与抛物线交于,两点,为坐标原点,,交于点,点的坐标为,则的值为()A. B.2 C. D.312.已知函数定义域为,为偶函数,为奇函数,且满足,则()A. B.0 C.2 D.2023二、填空题(每题5分,满分20分.)13.的展开式中的项系数为___________;14.已知四边形是边长为2的正方形,若,且为的中点,则______.15.经过点以及圆与交点的圆的方程为______.16.已知函数,若有两个不同的极值点,且,则的取值范围为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:每题12分,共60分.17.已知数列满足.(1)求数列的通项公式;(2)若,求数列前项和.18.如图,正四棱锥的底面边长和高均为2,,分别为,的中点.(1)若点是线段上的点,且,判断点是否在平面内,并证明你的结论;(2)求直线与平面所成角的正弦值.19.世界杯足球赛淘汰赛阶段比赛规则为:90分钟内进球多的球队取胜,如果参赛双方在90分钟内无法决出胜负(踢成平局),将进行30分钟的加时赛,若加时赛阶段两队仍未分出胜负,则进入“点球大战”.点球大战的规则如下:①两队各派5名队员,双方轮流踢点球,累计进球个数多者胜;②如果在踢满5球前,一队进球数已多于另一队踢5球可能踢中的球数,则该队胜出,譬如:第4轮结束时,双方进球数比,则不需踢第5轮了;③若前5轮点球大战中双方进球数持平,则采用“突然死亡法”决出胜负,即从第6轮起,双方每轮各派1人踢点球,若均进球或均不进球,则继续下一轮.直到出现一方进球另一方不进球的情况,进球方胜.现有甲乙两队在淘汰赛中相遇,双方势均力敌,120分钟(含加时赛)仍未分出胜负,须采用“点球大战”决定胜负.设甲队每名球员射进的概率为,乙队每名球员射进的概率为.每轮点球结果互不影响.(1)设甲队踢了5球,为射进点球的个数,求的分布列与期望;(2)若每轮点球都由甲队先踢,求在第四轮点球结束时,乙队进了4个球并刚好胜出的概率.20.已知椭圆:的离心率为,且过点.(1)求椭圆的方程;(2)设不过点的直线与椭圆交于,两点,关于原点的对称点为,记直线,,的斜率分别为,,,若,证明直线的斜率为定值.21.已知函数,.(1)求的单调区间与最值;(2)若存在,使得不等式成立,求实数的取值范围.(二)选考题:共10分.请考生在第
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自然观与认识论课件
- 广东省广州市八十九中2024-2025学年七年级上学期期中考试语文试题
- 高等学校教师任职资格呈报表
- 电力系统继电保护技术 第4版 课件 第5章 输电线路的全线快速保护
- 《4四个太阳》(教案)
- 浴池服务员知识竞赛参考题库400题(含答案)
- 重庆市綦江区联盟校2024-2025学年八年级上学期期中语文试题(含解析)
- 山东省聊城市第二中学2024-2025学年高三12月月考语文试题
- 数学公开课教案-学生版
- 九年级上册人教版数学期末综合知识模拟试卷(含答案)
- 粮库平房仓施工组织设计
- 运用PDCA管理降低深静脉血栓发生率PPT课件
- DB11∕T 1062-2022 人员疏散掩蔽标志设计与设置
- 国开电大本科《言语交际》网上形考(任务1至6)试题及答案
- 工程机械租赁服务方案及保障措施 (1)
- 砂石料场建设方案详细
- 化学药品检验中应注意的问题
- 20种校园植物检索表(共1页)
- WordA4信纸(A4横条直接打印版)
- 益盟指标破解公式(共5页)
- 变电站检修预试方案.
评论
0/150
提交评论