2025《初中数学》专题突破专题62 二次函数与圆综合性问题(含答案及解析)_第1页
2025《初中数学》专题突破专题62 二次函数与圆综合性问题(含答案及解析)_第2页
2025《初中数学》专题突破专题62 二次函数与圆综合性问题(含答案及解析)_第3页
2025《初中数学》专题突破专题62 二次函数与圆综合性问题(含答案及解析)_第4页
2025《初中数学》专题突破专题62 二次函数与圆综合性问题(含答案及解析)_第5页
已阅读5页,还剩67页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

例题精讲例题精讲【例1】.如图,抛物线的顶点为A(0,2),且经过点B(2,0).以坐标原点O为圆心的圆的半径r=,OC⊥AB于点C.(1)求抛物线的函数解析式.(2)求证:直线AB与⊙O相切.(3)已知P为抛物线上一动点,线段PO交⊙O于点M.当以M,O,A,C为顶点的四边形是平行四边形时,求PM的长.变式训练【变1-1】.如图,抛物线y=ax2+bx+2与直线AB相交于A(﹣1,0),B(3,2),与x轴交于另一点C.(1)求抛物线的解析式;(2)在y上是否存在一点E,使四边形ABCE为矩形,若存在,请求出点E的坐标;若不存在,请说明理由;(3)以C为圆心,1为半径作⊙O,D为⊙O上一动点,求DA+DB的最小值【例2】.如图1,在平面直角坐标系中,抛物线与x轴分别交于A、B两点,与y轴交于点C(0,6),抛物线的顶点坐标为E(2,8),连结BC、BE、CE.(1)求抛物线的表达式;(2)判断△BCE的形状,并说明理由;(3)如图2,以C为圆心,为半径作⊙C,在⊙C上是否存在点P,使得BP+EP的值最小,若存在,请求出最小值;若不存在,请说明理由.变式训练【变2-1】.在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图甲,当△ACP是以AC为直角边的直角三角形时,求点P的坐标;(3)如图乙,过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D.交OM于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.1.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与坐标轴相切时,圆心P的坐标可以是.2.如图1,抛物线与x轴交于O、A两点,点B为抛物线的顶点,连接OB.(1)求∠AOB的度数;(2)如图2,以点A为圆心,4为半径作⊙A,点M在⊙A上.连接OM、BM,①当△OBM是以OB为底的等腰三角形时,求点M的坐标;②如图3,取OM的中点N,连接BN,当点M在⊙A上运动时,求线段BN长度的取值范围.3.如图,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,且OB=OC.(1)求抛物线的解析式;(2)如图1,若点P是线段BC(不与B,C重合)上一动点,过点P作x轴的垂线交抛物线于M点,连接CM,将△PCM沿CM对折,如果点P的对应点N恰好落在y轴上,求此时点P的坐标;(3)如图2,若第四象限有一动点E,满足BE=OB,过E作EF⊥x轴于点F,设F坐标为(t,0),0<t<3,△BEF的内心为I,连接CI,直接写出CI的最小值.4.已知抛物线y=x2﹣(2m﹣1)x+4m﹣6.(1)试说明对于每一个实数m,抛物线都经过x轴上的一个定点;(2)设抛物线与x轴的两个交点A(x1,0)和B(x2,0)(x1<x2)分别在原点的两侧,且A、B两点间的距离小于6,求m的取值范围;(3)抛物线的对称轴与x轴交于点C,在(2)的条件下,试判断是否存在m的值,使经过点C及抛物线与x轴的一个交点的⊙M与y轴的正半轴相切于点D,且被x轴截得的劣弧与是等弧?若存在,求出所有满足条件的m的值;若不存在,说明理由.5.已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=﹣的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求的值.6.如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN=8S△QAB,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明理由.7.如图,已知二次函数的图象顶点在原点,且点(2,1)在二次函数的图象上,过点F(0,1)作x轴的平行线交二次函数的图象于M、N两点.(1)求二次函数的表达式;(2)P为平面内一点,当△PMN是等边三角形时,求点P的坐标;(3)在二次函数的图象上是否存在一点E,使得以点E为圆心的圆过点F和点N,且与直线y=﹣1相切.若存在,求出点E的坐标,并求⊙E的半径;若不存在,说明理由.8.已知二次函数y=﹣x2+bx+c+1,①当b=1时,求这个二次函数的对称轴的方程;②若c=﹣b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?③若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,b>0,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,求二次函数的表达式.9.已知抛物线y=ax2+bx+c过点A(0,2).若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足;当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.10.如图,在平面直角坐标系xOy中,O为坐标原点,点A(4,0),点B(0,4),△ABO的中线AC与y轴交于点C,且⊙M经过O,A,C三点.(1)求圆心M的坐标;(2)若直线AD与⊙M相切于点A,交y轴于点D,求直线AD的函数表达式;(3)在(2)的条件下,在过点B且以圆心M为顶点的抛物线上有一动点P,过点P作PE∥y轴,交直线AD于点E.若以PE为半径的⊙P与直线AD相交于另一点F.当EF=4时,求点P的坐标.11.如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B三点的⊙P相交于点C.(1)求点A的坐标;(2)过点C作⊙P的切线CE交x轴于点E.①如图1,求证:CE=DE;②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求﹣的值.12.抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点B,D的坐标分别为,;(2)如图①,抛物线翻折后,点D落在点E处,当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,点Q是“M”形新图象上一动点.①直接写出“M”形图象AB段的函数关系式;②是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.13.已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与抛物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.14.如图,已知二次函数y=ax2+bx+3(a≠0)的图象经过点A(3,0),B(4,1),且与y轴交于点C,连接AB、AC、BC.(1)求此二次函数的关系式;(2)判断△ABC的形状;若△ABC的外接圆记为⊙M,请直接写出圆心M的坐标;(3)若将抛物线沿射线BA方向平移,平移后点A、B、C的对应点分别记为点A1、B1、C1,△A1B1C1的外接圆记为⊙M1,是否存在某个位置,使⊙M1经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.15.已知抛物线C1:y=ax2过点(2,2)(1)直接写出抛物线的解析式;(2)如图,△ABC的三个顶点都在抛物线C1上,且边AC所在的直线解析式为y=x+b,若AC边上的中线BD平行于y轴,求的值;(3)如图,点P的坐标为(0,2),点Q为抛物线上C1上一动点,以PQ为直径作⊙M,直线y=t与⊙M相交于H、K两点是否存在实数t,使得HK的长度为定值?若存在,求出HK的长度;若不存在,请说明理由.16.定义:平面直角坐标系xOy中,过二次函数图象与坐标轴交点的圆,称为该二次函数的坐标圆.(1)已知点P(2,2),以P为圆心,为半径作圆.请判断⊙P是不是二次函数y=x2﹣4x+3的坐标圆,并说明理由;(2)如图1,已知二次函数y=x2﹣4x+4图象的顶点为A,坐标圆的圆心为P,求△POA周长的最小值;(3)如图2,已知二次函数y=ax2﹣4x+4(0<a<1)图象交x轴于点A,B,交y轴于点C,与坐标圆的第四个交点为D,连结PC,PD.若∠CPD=120°,求a的值.17.如图,在平面直角坐标系中,抛物线y=x2﹣bx﹣c交x轴于点A,B,点B的坐标为(4,0),与y轴于交于点C(0,﹣2).(1)求此抛物线的解析式;(2)在抛物线上取点D,若点D的横坐标为5,求点D的坐标及∠ADB的度数;(3)在(2)的条件下,设抛物线对称轴l交x轴于点H,△ABD的外接圆圆心为M(如图1),过点B作⊙M的切线交于点P(如图2),设Q为⊙M上一动点,则在点运动过程中的值是否变化?若不变,求出其值;若变化,请说明理由.18.如图,抛物线y=ax2+bx+c(a≠0),与x轴交于A(4,0)、O两点,点D(2,﹣2)为抛物线的顶点.(1)求该抛物线的解析式;(2)点E为AO的中点,以点E为圆心、以1为半径作⊙E,交x轴于B、C两点,点M为⊙E上一点.①射线BM交抛物线于点P,设点P的横坐标为m,当tan∠MBC=2时,求m的值;②如图2,连接OM,取OM的中点N,连接DN,则线段DN的长度是否存在最大值或最小值?若存在,请求出DN的最值;若不存在,请说明理由.19.如图,在平面直角坐标系上,一条抛物线y=ax2+bx+c(a≠0)经过A(1,0)、B(3,0)、C(0,3)三点,连接BC并延长.(1)求抛物线的解析式;(2)点M是直线BC在第一象限部分上的一个动点,过M作MN∥y轴交抛物线于点N.1°求线段MN的最大值;2°当MN取最大值时,在线段MN右侧的抛物线上有一个动点P,连接PM、PN,当△PMN的外接圆圆心Q在△PMN的边上时,求点P的坐标.20.如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点(x,y)的坐标值:x…﹣10123…y…03430…(1)求出这条抛物线的解析式;(2)如图1,直线y=kx+1(k<0)与抛物线交于P,Q两点,交抛物线的对称轴于点T,若△QMT的面积是△PMT面积的两倍,求k的值;(3)如图2,点D是第四象限内抛物线上一动点,过点D作DF⊥x轴,垂足为F,△ABD的外接圆与DF相交于点E.试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.21.如图,抛物线y=﹣x2+2x+3与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴.(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②△BCF的面积为S,求S与m的函数关系式,并求出S的最大值.(3)现有一个以原点O为圆心,长为半径的圆沿y轴正半轴方向向上以每秒1个单位的速度运动,问几秒后⊙O与直线AC相切?22.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或不是)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac).记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4求同时满足下列三个条件的抛物线的解析式:①=+;②=+;③“十字形”ABCD的周长为12.

例题精讲例题精讲【例1】.如图,抛物线的顶点为A(0,2),且经过点B(2,0).以坐标原点O为圆心的圆的半径r=,OC⊥AB于点C.(1)求抛物线的函数解析式.(2)求证:直线AB与⊙O相切.(3)已知P为抛物线上一动点,线段PO交⊙O于点M.当以M,O,A,C为顶点的四边形是平行四边形时,求PM的长.解:(1)∵抛物线的顶点为A(0,2),∴可设抛物线的解析式为:y=ax2+2,∵抛物线经过点B(2,0),∴4a+2=0,解得:a=﹣,∴抛物线的解析式为:y=﹣x2+2;(2)证明:∵A(0,2),B(2,0),∴OA=OB=2,∴AB=2,∵OC⊥AB,∴•OA•OB=•AB•OC,∴×2×2=×2•OC,解得:OC=,∵⊙O的半径r=,∴OC是⊙O的半径,∴直线AB与⊙O相切;(3)∵点P在抛物线y=﹣x2+2上,∴可设P(x,﹣x2+2),以M,O,A,C为顶点的四边形是平行四边形时,可得:AC=OM=,CM=OA=2,∵点C是AB的中点,∴C(1,1),M(1,﹣1),设直线OM的解析式为y=kx,将点M(1,﹣1)代入,得:k=﹣1,∴直线OM的解析式为y=﹣x,∵点P在OM上,∴﹣x2+2=﹣x,解得:x1=1+,x2=1﹣,∴y1=﹣1﹣,y2=﹣1+,∴P1(1+,﹣1﹣),P2(1﹣,﹣1+),如图,当点P位于P1位置时,OP1===(1+)=+,∴P1M=OP1﹣OM=+﹣=,当点P位于P2位置时,同理可得:OP2=﹣,∴P2M=OP2﹣OM=﹣﹣=﹣2;综上所述,PM的长是或﹣2.变式训练【变1-1】.如图,抛物线y=ax2+bx+2与直线AB相交于A(﹣1,0),B(3,2),与x轴交于另一点C.(1)求抛物线的解析式;(2)在y上是否存在一点E,使四边形ABCE为矩形,若存在,请求出点E的坐标;若不存在,请说明理由;(3)以C为圆心,1为半径作⊙O,D为⊙O上一动点,求DA+DB的最小值解:(1)把A(﹣1,0)、B(3,2)代入y=ax2+bx+2,得,解得,∴抛物线的解析式为y=x2+x+2.(2)存在.如图1,作AE⊥AB交y轴于点E,连结CE;作BF⊥x轴于点F,则F(3,0).当y=0时,由x2+x+2=0,得x1=1,x2=4,∴C(4,0),∴CF=AO=1,AF=3﹣(﹣1)=4;又∵BF=2,∴,∵∠BFC=∠AFB=90°,∴△BFC∽△AFB,∴∠CBF=∠BAF,∴∠ABC=∠CBF+∠ABF=∠BAF+∠ABF=90°,∴BC∥AE,∵∠BCF=90°﹣∠BAC=∠EAO,∠BFC=∠EOA=90°,∴△BCF≌△EAO(ASA),∴BC=EA,∴四边形ABCE是矩形;∵OE=FB=2,∴E(0,﹣2).(3)如图2,作FL⊥BC于点L,连结AL、CD.由(2)得∠BFC=90°,BF=2,CF=1,∴CF=CD,CB==.∵∠FLC=∠BFC=90°,∠FCL=∠BCF(公共角),∴△FCL∽△BCF,∴=,∴=,∵∠DCL=∠BCD(公共角),∴△DCL∽△BCD,∴=,∴LD=DB;∵DA+LD≥AL,∴当DA+LD=AL,即点D落在线段AL上时,DA+DB=DA+LD=AL最小.∵CL=CF=,∴BL==,∴BL2=()2=,又∵AB2=22+42=20,∴AL===,DA+DB的最小值为.【例2】.如图1,在平面直角坐标系中,抛物线与x轴分别交于A、B两点,与y轴交于点C(0,6),抛物线的顶点坐标为E(2,8),连结BC、BE、CE.(1)求抛物线的表达式;(2)判断△BCE的形状,并说明理由;(3)如图2,以C为圆心,为半径作⊙C,在⊙C上是否存在点P,使得BP+EP的值最小,若存在,请求出最小值;若不存在,请说明理由.解:(1)∵抛物线的顶点坐标为E(2,8),∴设该抛物线的表达式为y=a(x﹣2)2+8,∵与y轴交于点C(0,6),∴把点C(0,6)代入得:a=﹣,∴该抛物线的表达式为y=x2+2x+6;(2)△BCE是直角三角形.理由如下:∵抛物线与x轴分别交于A、B两点,∴令y=0,则﹣(x﹣2)2+8=0,解得:x1=﹣2,x2=6,∴A(﹣2,0),B(6,0),∴BC2=62+62=72,CE2=(8﹣6)2+22=8,BE2=(6﹣2)2+82=80,∴BE2=BC2+CE2,∴∠BCE=90°,∴△BCE是直角三角形;(3)⊙C上存在点P,使得BP+EP的值最小且这个最小值为.理由如下:如图,在CE上截取CF=(即CF等于半径的一半),连结BF交⊙C于点P,连结EP,则BF的长即为所求.理由如下:连结CP,∵CP为半径,∴==,又∵∠FCP=∠PCE,∴△FCP∽△PCE,∴==,即FP=EP,∴BF=BP+EP,由“两点之间,线段最短”可得:BF的长即BP+EP为最小值.∵CF=CE,E(2,8),∴由比例性质,易得F(,),∴BF==.变式训练【变2-1】.在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图甲,当△ACP是以AC为直角边的直角三角形时,求点P的坐标;(3)如图乙,过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D.交OM于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.解:(1)把A(﹣2,0),B(4,0)代入y=x2+bx+c得:,解得,∴二次函数的解析式为y=x2﹣x﹣4;(2)如图:由y=x2﹣x﹣4可得C(0,﹣4),设P(x,x2﹣x﹣4),∴AC2=(﹣2﹣0)2+(0+4)2=20,CP2=x2+(x2﹣x)2,AP2=(x+2)2+(x2﹣x﹣4)2,∵△ACP是以AC为直角边的直角三角形,∴AC2+CP2=AP2,即20+x2+(x2﹣x)2=(x+2)2+(x2﹣x﹣4)2,∴20+x2+(x2﹣x)2=x2+4x+4+(x2﹣x)2﹣8(x2﹣x)+16,解得x=0(与C重合,舍去)或x=3,∴P(3,﹣);(3)点P在运动过程中线段DE的长不变,理由如下:连接AP、BE,如图:∵=,=,∴∠APD=∠DBE,∠DAP=∠DEB,∴△ADP∽△EDB,∴=,∴DE=,设P(m,m2﹣m﹣4),则D(m,0),∵A(﹣2,0),B(4,0),C(0,﹣4),∴AD=m+2,BD=4﹣m,PD=﹣(m2﹣m﹣4)=﹣m2+m+4,∴DE===2,∴DE是定值2,∴点P在运动过程中线段DE的长不变,是定值2.1.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与坐标轴相切时,圆心P的坐标可以是(,2)或(﹣,2)或(2,1)或(﹣2,1).解:分两种情况:(1)当⊙P与x轴相切时,依题意,可设P(x,2)或P(x,﹣2).①当P的坐标是(x,2)时,将其代入y=x2﹣1,得2=x2﹣1,解得x=±,此时P(,2)或(﹣,2);②当P的坐标是(x,﹣2)时,将其代入y=x2﹣1,得﹣2=x2﹣1,无解.(2)当⊙P与y轴相切时,∵⊙P的半径为2,∴当⊙P与y轴相切时,点P到y轴的距离为2,∴P点的横坐标为2或﹣2,当x=2时,代入y=x2﹣1可得y=1,当x=﹣2时,代入y=x2﹣1可得y=1,∴点P的坐标为(2,1)或(﹣2,1),综上所述,符合条件的点P的坐标是(,2)或(﹣,2)或(2,1)或(﹣2,1);故答案为:(,2)或(﹣,2)或(2,1)或(﹣2,1).2.如图1,抛物线与x轴交于O、A两点,点B为抛物线的顶点,连接OB.(1)求∠AOB的度数;(2)如图2,以点A为圆心,4为半径作⊙A,点M在⊙A上.连接OM、BM,①当△OBM是以OB为底的等腰三角形时,求点M的坐标;②如图3,取OM的中点N,连接BN,当点M在⊙A上运动时,求线段BN长度的取值范围.解:(1)令y=0,则﹣2x=0,解得:x=0或8.∴A(8,0).∴OA=8.∵y=﹣2x=﹣4,∴B(4,﹣4).过点B作BD⊥OA于点D,如图,则OD=4,BD=4,∴OD=BD,∴∠AOB=∠OBD=45°;(2)①设⊙A与x轴交于点C,则C(4,0).连接BC,如图,∵B(4,﹣4),∴BC⊥OA.∵CO=CB=4,∴△CBO是以OB为底的等腰三角形.∴点M与点C重合时,△MBO是以OB为底的等腰三角形.此时点M(4,0);过点A作AM⊥x轴,交⊙A于点M,延长MA交⊙A于点E,连接BE,过点M作MF⊥y轴于点F,如图,则M(8,4),E(8,﹣4),F(0,4).∴MF=ME=8.∵B(4,﹣4),∴BE∥x轴.∴BE⊥ME,BE=4.∴∠BEM=∠MFO=90°,BE=OF=4.在△MOF和△MBE中,,∴△MOF≌△MBE(SAS).∴MO=MB.∴△MBO是以OB为底的等腰三角形.此时点M(8,4);综上,当△OBM是以OB为底的等腰三角形时,点M的坐标为(4,0)或(8,4);②设⊙A与x轴交于点C,则C(4,0).连接BC,CN,AM,如图,∵A(8,0),∴点C是OA的中点.∵N为OM的中点,∴CN是△OMA的中位线.∴CN=AM=2.当点M在⊙A上运动时,由三角形的三边的关系定理可知:BC﹣CN≤BN≤BC+CN.∵BC=4,∴4﹣2≤BN≤4+2.∴线段BN长度的取值范围为:2≤BN≤6.3.如图,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,且OB=OC.(1)求抛物线的解析式;(2)如图1,若点P是线段BC(不与B,C重合)上一动点,过点P作x轴的垂线交抛物线于M点,连接CM,将△PCM沿CM对折,如果点P的对应点N恰好落在y轴上,求此时点P的坐标;(3)如图2,若第四象限有一动点E,满足BE=OB,过E作EF⊥x轴于点F,设F坐标为(t,0),0<t<3,△BEF的内心为I,连接CI,直接写出CI的最小值.解:(1)在y=ax2﹣2ax﹣3a(a>0)中,令y=0,得:ax2﹣2ax﹣3a=0,解得:x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),∴OB=3,∵OB=OC,∴OC=3,∴C(0,﹣3),∴﹣3a=﹣3,∴a=1,∴抛物线解析式为:y=x2﹣2x﹣3.(2)设直线BC解析式为y=kx+b,∵B(3,0),C(0,﹣3),∴,解得:,∴直线BC解析式为:y=x﹣3,设M点坐标为(m,m2﹣2m﹣3),∵PM⊥x轴,∴P(m,m﹣3),∴PM=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,∵OB=OC,∠BOC=90°,∴CB=OB,∴CP=m,∵△PCM沿CM对折,点P的对应点N恰好落在y轴上,∴∠PCM=∠NCM,∵PM∥y轴,∴∠NCM=∠PMC,∴∠PCM=∠PMC,∴PC=PM,∴m=﹣m2+3m,整理得:m2+(﹣3)m=0,解得:m1=0(舍去),m2=3﹣,∴当m=3﹣时,m﹣3=﹣,∴P(3﹣,﹣).(3)如图2,连接BI,OI,EI,作△OBI的外接圆⊙M,连接OM,BM,MI,CM,过M作MH⊥y轴于H,∵EF⊥x轴,∴∠BFE=90°,∴∠FBE+∠FEB=90°,∵△BEF的内心为I,∴BI,EI分别平分∠FBE,∠FEB,∴∠IBE=∠FBE,∠IEB=∠FEB,∴∠IBE+∠IEB=(∠FBE+∠FEB)=45°,∴∠BIE=135°,在△BIO和△BIE中,,∴△BIO≌△BIE(SAS),∴∠BIO=∠BIE=135°,∵⊙M是△OBI的外接圆,∴∠OMB=2×(180°﹣∠BIO)=90°,∴OM=BM=OB=,∴MI=OM=,∴∠MOB=∠MOH=45°,∵MH⊥y轴,∴∠HOM=∠HMO=45°,∴OH=HM=OM=,∴CH=OH+OC=+3=,∴CM==,∵CI≥CM﹣MI,当且仅当C、M、I三点共线时,CI取得最小值,∴CI的最小值为﹣.4.已知抛物线y=x2﹣(2m﹣1)x+4m﹣6.(1)试说明对于每一个实数m,抛物线都经过x轴上的一个定点;(2)设抛物线与x轴的两个交点A(x1,0)和B(x2,0)(x1<x2)分别在原点的两侧,且A、B两点间的距离小于6,求m的取值范围;(3)抛物线的对称轴与x轴交于点C,在(2)的条件下,试判断是否存在m的值,使经过点C及抛物线与x轴的一个交点的⊙M与y轴的正半轴相切于点D,且被x轴截得的劣弧与是等弧?若存在,求出所有满足条件的m的值;若不存在,说明理由.解:(1)由题意可知:y=(x﹣2)(x﹣2m+3),因此抛物线与x轴的两个交点坐标为:(2,0)(2m﹣3,0),因此无论m取何值,抛物线总与x轴交于(2,0)点;(2)令y=0,有:x2﹣(2m﹣1)x+4m﹣6=0,则:x1+x2=2m﹣1,x1x2=4m﹣6;∵AB<6∴x2﹣x1<6,即(x2﹣x1)2<36,(x1+x2)2﹣4x1x2<36,即(2m﹣1)2﹣4(4m﹣6)<36,解得﹣<x<.①根据A、B分别在原点两侧可知:x1x2<0,即4m﹣6<0,m<.②综合①②可得﹣<m<;(3)假设存在这样的m,设圆M与y轴的切点为D,过M作x轴的垂线设垂足为E.①当C点在x轴正半轴时,x=>0,因此<m<,∵弧BC=弧CD,因此BC=CD.OC=,CD=BC=OB﹣OC=2﹣=,EC=BC=,OE=MD=OC+CE=+=.易知:OD=ME,即OD2=ME2∴CD2﹣OC2=CM2﹣CE2,()2﹣()2=()2﹣()2;解得m=,符合m的取值范围.②当C点在x轴负半轴时,x=<0,因此﹣<m<,同①可求得OC=,CD=AC=,CE=,MD=OE=.同理有:CD2﹣OC2=MC2﹣CE2()2﹣()2=()2﹣()2化简得:m2=,∴m=±,均不符合m的取值范围,因此这种情况不成立.综上所述,存在符合条件的m,且m=.5.已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=﹣的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求的值.解:(1)令y=0,∴x2+mx﹣2m﹣4=0,∴△=m2﹣4[﹣2m﹣4]=m2+8m+16,∵m>0,∴Δ>0,∴该抛物线与x轴总有两个不同的交点;(2)令y=0,∴x2+mx﹣2m﹣4=0,∴(x﹣2)[x+(m+2)]=0,∴x=2或x=﹣(m+2),∴A(2,0),B(﹣(m+2),0),∴OA=2,OB=m+2,令x=0,∴y=﹣2(m+2),∴C(0,﹣2(m+2)),∴OC=2(m+2),①通过定点(0,1)理由:如图,∵点A,B,C在⊙P上,∴∠OCB=∠OAF,在Rt△BOC中,tan∠OCB===,在Rt△AOF中,tan∠OAF===,∴OF=1,∴点F的坐标为(0,1);②如图1,由①知,点F(0,1),∵D(0,1),∴点D在⊙P上,∵点E是点C关于抛物线的对称轴的对称点,∴∠DCE=90°,∵⊙P是△ABC的外接圆,∴点P在抛物线的对称轴上,∴点E在⊙P上,∴DE是⊙P的直径,∴∠DBE=90°,∵∠BED=∠OCB,∴tan∠BED=,设BD=n,在Rt△BDE中,tan∠BED===,∴BE=2n,根据勾股定理得,DE==n,∴l=BD+BE+DE=(3+)n,r=DE=n,∴==.6.如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN=8S△QAB,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明理由.解:(1)如图,连接OC,∵M(4,0),N(0,3),∴OM=4,ON=3,∴MN=5,∴OC=MN=,∵CD为抛物线对称轴,∴OD=MD=2,在Rt△OCD中,由勾股定理可得CD===,∴PD=PC﹣CD=﹣=1,∴P(2,﹣1);(2)∵抛物线的顶点为P(2,﹣1),∴设抛物线的函数表达式为y=a(x﹣2)2﹣1,∵抛物线过N(0,3),∴3=a(0﹣2)2﹣1,解得a=1,∴抛物线的函数表达式为y=(x﹣2)2﹣1,即y=x2﹣4x+3;(3)在y=x2﹣4x+3中,令y=0可得0=x2﹣4x+3,解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∵ON=3,OM=4,PD=1,∴S四边形OPMN=S△OMP+S△OMN=OM•PD+OM•ON=×4×1+×4×3=8=8S△QAB,∴S△QAB=1,设Q点纵坐标为y,则×2×|y|=1,解得y=1或y=﹣1,当y=1时,则△QAB为钝角三角形,而△OBN为直角三角形,不合题意,舍去,当y=﹣1时,可知P点即为所求的Q点,∵D为AB的中点,∴AD=BD=QD,∴△QAB为等腰直角三角形,∵ON=OB=3,∴△OBN为等腰直角三角形,∴△QAB∽△OBN,综上可知存在满足条件的点Q,其坐标为(2,﹣1).7.如图,已知二次函数的图象顶点在原点,且点(2,1)在二次函数的图象上,过点F(0,1)作x轴的平行线交二次函数的图象于M、N两点.(1)求二次函数的表达式;(2)P为平面内一点,当△PMN是等边三角形时,求点P的坐标;(3)在二次函数的图象上是否存在一点E,使得以点E为圆心的圆过点F和点N,且与直线y=﹣1相切.若存在,求出点E的坐标,并求⊙E的半径;若不存在,说明理由.解:(1)∵二次函数的图象顶点在原点,故设二次函数表达式为:y=ax2,将(2,1)代入上式并解得:a=,故二次函数表达式为:y=x2;(2)将y=1代入y=x2并解得:x=±2,故点M、N的坐标分别为(﹣2,1)、(2,1),则MN=4,∵△PMN是等边三角形,∴点P在y轴上且PM=4,∴PF=2;∵点F(0,1),∴点P的坐标为(0,1+2)或(0,1﹣2);(3)假设二次函数的图象上存在一点E满足条件,设点Q是FN的中点,则点Q(1,1),故点E在FN的中垂线上.∴点E是FN的中垂线与y=x2图象的交点,∴y=×12=,则点E(1,),EN==,同理EF==,点E到直线y=﹣1的距离为|﹣(﹣1)|=,故存在点E,使得以点E为圆心半径为的圆过点F,N且与直线y=﹣1相切.8.已知二次函数y=﹣x2+bx+c+1,①当b=1时,求这个二次函数的对称轴的方程;②若c=﹣b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?③若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,b>0,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,求二次函数的表达式.解:①二次函数y=﹣x2+bx+c+1的对称轴为x=,当b=1时,=,∴当b=1时,求这个二次函数的对称轴的方程为x=.②二次函数y=﹣x2+bx+c+1的顶点坐标为(,),∵二次函数的图象与x轴相切且c=﹣b2﹣2b,∴,解得:b=,∴b为,二次函数的图象与x轴相切.③∵AB是半圆的直径,∴∠AMB=90°,∴∠OAM+∠OBM=90°,∵∠AOM=∠MOB=90°,∴∠OAM+∠OMA=90°,∴∠OMA=∠OBM,∴△OAM∽△OMB,∴,∴OM2=OA•OB,∵二次函数的图象与x轴交于点A(x1,0),B(x2,0),∴OA=﹣x1,OB=x2,x1+x2,=b,x1•x2=﹣(c+1),∵OM=c+1,∴(c+1)2=c+1,解得:c=0或c=﹣1(舍去),∴c=0,OM=1,∵二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,∴AD=BD,DF=4DE,DF∥OM,∴△BDE∽△BOM,△AOM∽△ADF,∴,,∴DE=,DF=,∴×4,∴OB=4OA,即x2=﹣4x1,∵x1•x2=﹣(c+1)=﹣1,∴,解得:,∴b=﹣+2=,∴二次函数的表达式为y=﹣x2+x+1.9.已知抛物线y=ax2+bx+c过点A(0,2).若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足;当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.解:①当x1<x2<0时,x1﹣x2<0,∵(x1﹣x2)(y1﹣y2)>0,∴y1﹣y2<0,∴当x<0时,y随x的增大而增大,当0<x1<x2时,x1﹣x2<0,∵(x1﹣x2)(y1﹣y2)<0,∴y1﹣y2>0,∴当x>0时,y随x的增大而减小.∴抛物线关于y轴对称,∴b=0,∵抛物线y=ax2+bx+c过点A(0,2),∴c=2,如图,连接OB、OC,设BC交y轴于点D.由对称性可知,△ABC为等腰三角形,又∵△ABC有一个内角为60°,∴△ABC是等边三角形,∴OD=OA=1,CD=OD=,∴B(﹣,﹣1),C(,﹣1),将C点坐标代入y=ax2+2可求得a=﹣1,∴抛物线的解析式为y=﹣x2+2.②设直线OM的解析式为y=k1x,∵O、M、N三点共线,∴x1≠0,x2≠0,且=,化为x1﹣x2=,∵x1≠x2,∴x1x2=﹣2,∴,∴,设点N关于y轴的对称点为N',则N'的坐标为,∵点P是点O关于点A的对称点,∴OP﹣2OA=4,即点P的坐标为(0,4),设直线PM的解析式为y=k2x+4,∵点M的坐标为,∴,∴,∴直线PM的解析式为x+4.∵,即N'在直线PM上,∴PA平分∠MPN.10.如图,在平面直角坐标系xOy中,O为坐标原点,点A(4,0),点B(0,4),△ABO的中线AC与y轴交于点C,且⊙M经过O,A,C三点.(1)求圆心M的坐标;(2)若直线AD与⊙M相切于点A,交y轴于点D,求直线AD的函数表达式;(3)在(2)的条件下,在过点B且以圆心M为顶点的抛物线上有一动点P,过点P作PE∥y轴,交直线AD于点E.若以PE为半径的⊙P与直线AD相交于另一点F.当EF=4时,求点P的坐标.解:(1)点B(0,4),则点C(0,2),∵点A(4,0),则点M(2,1);(2)应该是圆M与直线AD相切,则∠CAD=90°,设:∠CAO=α,则∠CAO=∠ODA=∠PEH=α,tan∠CAO===tanα,则sinα=,cosα=,AC=,则CD==10,则点D(0,﹣8),将点A、D的坐标代入一次函数表达式:y=mx+n并解得:直线AD的表达式为:y=2x﹣8;(3)抛物线的表达式为:y=a(x﹣2)2+1,将点B坐标代入上式并解得:a=,故抛物线的表达式为:y=x2﹣3x+4,过点P作PH⊥EF,则EH=EF=2,cos∠PEH=,解得:PE=5,设点P(x,x2﹣3x+4),则点E(x,2x﹣8),则PE=x2﹣3x+4﹣2x+8=5,解得x=或2,则点P(,)或(2,1).11.如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B三点的⊙P相交于点C.(1)求点A的坐标;(2)过点C作⊙P的切线CE交x轴于点E.①如图1,求证:CE=DE;②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求﹣的值.解:(1)令ax2+6ax=0,ax(x+6)=0,∴A(﹣6,0);(2)①证明:如图,连接PC,连接PB,延长交x轴于点M,∵⊙P过O、A、B三点,B为顶点,∴PM⊥OA,∠PBC+∠BDM=90°,又∵PC=PB,∴∠PCB=∠PBC,∵CE为切线,∴∠PCB+∠ECD=90°,又∵∠BDM=∠CDE,∴∠ECD=∠CDE,∴CE=DE.②解:设OE=m,点D的坐标为(t,0),∵∠CAE=∠CBO,∠CAE=∠OBE,∴∠CBO=∠EBO,由角平分线成比例定理可得:,即:,∴,∴,∴,=,=.12.抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点B,D的坐标分别为(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处,当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,点Q是“M”形新图象上一动点.①直接写出“M”形图象AB段的函数关系式;②是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)令y=0,则﹣x2+x﹣1=0,解得x=3或x=,∴B(3,0),A(,0),令x=0,则y=﹣1,∴C(0,﹣1),∵y=﹣x2+x﹣1=﹣(x﹣)2+,∴顶点D(,),故答案为:(3,0),(,);(2)∵E与D关于直线y=t对称,∴E(,2t﹣),设直线BC的解析式为y=kx+b,将B(3,0),C(0,﹣1)代入,得,∴,∴y=x﹣1,当x=时,y=﹣,∵E点在△ABC内(含边界),∴2t﹣≥﹣,∴t≥,∵2t﹣≤0,∴t≤,∵t<,∴t的取值范围是≤t≤;(3)①当t=0时,y=﹣x2+x﹣1关于x轴对称的函数为y=x2﹣x+1,∴“M”形图象AB段的函数关系式为y=x2﹣x+1(≤x≤3);②存在点P,理由如下:设Q点的横坐标为m,∵以CQ为直径的圆与x轴相切于点P,∴P点的横坐标为m,当m>3或m<时,Q(m,﹣m2+m﹣1),∵△CPQ为直角三角形,∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,解得m=或m=,∴P(,0)或P(,0);当≤m≤3时,Q(m,m2﹣m+1),∵△CPQ为直角三角形,∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,解得m=2或m=,∴P(,0)或P(1,0);综上所述:存在以CQ为直径的圆与x轴相切于点P,P点坐标为(,0)或(,0)或(,0)或P(1,0).13.已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与抛物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.解:(1)∵抛物线y=ax2+bx+c过点A(0,2),∴c=2.又∵点(﹣,0)也在该抛物线上,∴a(﹣)2+b(﹣)+c=0,∴2a﹣b+2=0(a≠0).(2)①∵当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,∴x1﹣x2<0,y1﹣y2<0,∴当x<0时,y随x的增大而增大;同理:当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,开口向下,∴b=0.∵OA为半径的圆与抛物线的另两个交点为B、C,∴△ABC为等腰三角形,又∵△ABC有一个内角为60°,∴△ABC为等边三角形.设线段BC与y轴交于点D,则BD=CD,且∠OCD=30°,又∵OB=OC=OA=2,∴CD=OC•cos30°=,OD=OC•sin30°=1.不妨设点C在y轴右侧,则点C的坐标为(,﹣1).∵点C在抛物线上,且c=2,b=0,∴3a+2=﹣1,∴a=﹣1,∴抛物线的解析式为y=﹣x2+2.②证明:由①可知,点M的坐标为(x1,﹣+2),点N的坐标为(x2,﹣+2).直线OM的解析式为y=k1x(k1≠0).∵O、M、N三点共线,∴x1≠0,x2≠0,且=,∴﹣x1+=﹣x2+,∴x1﹣x2=﹣,∴x1x2=﹣2,即x2=﹣,∴点N的坐标为(﹣,﹣+2).设点N关于y轴的对称点为点N′,则点N′的坐标为(,﹣+2).∵点P是点O关于点A的对称点,∴OP=2OA=4,∴点P的坐标为(0,4).设直线PM的解析式为y=k2x+4,∵点M的坐标为(x1,﹣+2),∴﹣+2=k2x1+4,∴k2=﹣,∴直线PM的解析式为y=﹣x+4.∵﹣•+4==﹣+2,∴点N′在直线PM上,∴PA平分∠MPN.14.如图,已知二次函数y=ax2+bx+3(a≠0)的图象经过点A(3,0),B(4,1),且与y轴交于点C,连接AB、AC、BC.(1)求此二次函数的关系式;(2)判断△ABC的形状;若△ABC的外接圆记为⊙M,请直接写出圆心M的坐标;(3)若将抛物线沿射线BA方向平移,平移后点A、B、C的对应点分别记为点A1、B1、C1,△A1B1C1的外接圆记为⊙M1,是否存在某个位置,使⊙M1经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.解:(1)把点A(3,0),B(4,1)代入y=ax2+bx+3中,,解得:,所以所求函数关系式为:y=x2﹣x+3;(2)△ABC是直角三角形,过点B作BD⊥x轴于点D,易知点C坐标为:(0,3),所以OA=OC,所以∠OAC=45°,又∵点B坐标为:(4,1),∴AD=BD,∴∠DAB=45°,∴∠BAC=180°﹣45°﹣45°=90°,∴△ABC是直角三角形,圆心M的坐标为:(2,2);(3)存在取BC的中点M,过点M作ME⊥y轴于点E,∵M的坐标为:(2,2),∴MC==,OM=2,∴∠MOA=45°,又∵∠BAD=45°,∴OM∥AB,∴要使抛物线沿射线BA方向平移,且使⊙M1经过原点,则平移的长度为:2﹣或2+;∵∠BAD=45°,∴抛物线的顶点向左、向下均分别平移=个单位长度或=个单位长度,∵y=x2﹣x+3=(x﹣)2﹣,∴平移后抛物线的关系式为:y=(x﹣+)2﹣﹣,即y=(x﹣)2﹣,或y=(x﹣+)2﹣﹣,即y=(x﹣)2﹣.综上所述,存在一个位置,使⊙M1经过原点,此时抛物线的关系式为:y=(x﹣)2﹣或y=(x﹣)2﹣.15.已知抛物线C1:y=ax2过点(2,2)(1)直接写出抛物线的解析式y=x2;(2)如图,△ABC的三个顶点都在抛物线C1上,且边AC所在的直线解析式为y=x+b,若AC边上的中线BD平行于y轴,求的值;(3)如图,点P的坐标为(0,2),点Q为抛物线上C1上一动点,以PQ为直径作⊙M,直线y=t与⊙M相交于H、K两点是否存在实数t,使得HK的长度为定值?若存在,求出HK的长度;若不存在,请说明理由.解:(1)把点(2,2)坐标代入y=ax2,解得:a=,∴抛物线的解析式为y=x2;(2)把y=x+b和y=x2得:x2﹣2x﹣2b=0,设A、C两点的坐标为(x1,y1)、(x2,y2),则:x1+x2=2,x1•x2=﹣2b,点D坐标为(,),即;D(1,1+b),B坐标为(1,),AC2=[(x2﹣x1)]2=16b+8,BD=+b,∴=16;(3)设点Q坐标为(a,a2),点P的坐标为(0,2),由P、Q坐标得点M的坐标为(,a2+1),设圆的半径为r,由P(0,2)、M两点坐标可以求出r2=+(a2﹣1)2=a4﹣a2+1,设点M到直线y=t的距离为d,则d2=(a2+1﹣t)2=a4+a2+1+t2﹣2t﹣a2t,则HK=2=2,当t﹣=0时,HK为常数,t=,HK=.16.定义:平面直角坐标系xOy中,过二次函数图象与坐标轴交点的圆,称为该二次函数的坐标圆.(1)已知点P(2,2),以P为圆心,为半径作圆.请判断⊙P是不是二次函数y=x2﹣4x+3的坐标圆,并说明理由;(2)如图1,已知二次函数y=x2﹣4x+4图象的顶点为A,坐标圆的圆心为P,求△POA周长的最小值;(3)如图2,已知二次函数y=ax2﹣4x+4(0<a<1)图象交x轴于点A,B,交y轴于点C,与坐标圆的第四个交点为D,连结PC,PD.若∠CPD=120°,求a的值.解:(1)对于二次函数y=x2﹣4x+3,当x=0时,y=3;当y=0时,解得x=1或x=3,∴二次函数图象与x轴交点为A(1,0),B(3,0),与y轴交点为C(0,3),∵点P(2,2),∴PA=PB=PC=,∴⊙P是二次函数y=x2﹣4x+3的坐标圆.(2)如图1,连接PH,∵二次函数y=x2﹣4x+4图象的顶点为A,坐标圆的圆心为P,∴A(2,0),与y轴的交点H(0,4),∴△POA周长=PO+PA+OA=PO+PH+2≥OH+2=6,∴△POA周长的最小值为6.(3)如图2,连接CD,PA,设二次函数y=ax2﹣4x+4图象的对称轴l与CD交于点E,与x轴交于点F,由对称性知,对称轴l经过点P,且l⊥CD,∵AB=,∴AF=BF=,∵∠CPD=120°,PC=PD,C(0,4),∴∠PCD=∠PDC=30°,设PE=m,则PA=PC=2m,CE=m,PF=4﹣m,∵二次函数y=ax2﹣4x+4图象的对称轴l为,∴,即,在Rt△PAF中,PA2=PF2+AF2,∴,即,化简,得,解得,∴.17.如图,在平面直角坐标系中,抛物线y=x2﹣bx﹣c交x轴于点A,B,点B的坐标为(4,0),与y轴于交于点C(0,﹣2).(1)求此抛物线的解析式;(2)在抛物线上取点D,若点D的横坐标为5,求点D的坐标及∠ADB的度数;(3)在(2)的条件下,设抛物线对称轴l交x轴于点H,△ABD的外接圆圆心为M(如图1),过点B作⊙M的切线交于点P(如图2),设Q为⊙M上一动点,则在点运动过程中的值是否变化?若不变,求出其值;若变化,请说明理由.解:(1)将点B、C的坐标代入抛物线表达式得:,解得:,∴抛物线的解析式为y=x2﹣x﹣2;(2)当x=5时,y=x2﹣x﹣2=3,故D的坐标为(5,3),令y=0,则x=4(舍去)或﹣1,故点A(﹣1,0),如图,连接BD,作BN⊥AD于N,∵A(﹣1,0),B(4,0),C(0,﹣2),∴AD=3,BD=,AB=5,∵S△ABD==,∴BN=,∴sin∠BDN===,∴∠BDN=45°,∴∠ADB=∠BDN=45°;(3)不变.如图,连接MQ,MB,∵过点B作⊙M的切线交1于点P,∴∠MBP=90°,∵∠MBO=45°,∴∠PBH=45°,∴PH=HB=2.5,∵==,==,∵∠HMQ=∠QMP,∴△HMQ∽△QMP,∴==,∴在点Q运动过程中的值不变,其值为.18.如图,抛物线y=ax2+bx+c(a≠0),与x轴交于A(4,0)、O两点,点D(2,﹣2)为抛物线的顶点.(1)求该抛物线的解析式;(2)点E为AO的中点,以点E为圆心、以1为半径作⊙E,交x轴于B、C两点,点M为⊙E上一点.①射线BM交抛物线于点P,设点P的横坐标为m,当tan∠MBC=2时,求m的值;②如图2,连接OM,取OM的中点N,连接DN,则线段DN的长度是否存在最大值或最小值?若存在,请求出DN的最值;若不存在,请说明理由.解:(1)由抛物线顶点式表达式得:y=a(x﹣2)2﹣2,将点A的坐标代入上式并解得:a=,故抛物线的表达式为:y=(x﹣2)2﹣2=x2﹣2x①;(2)①点E是OA的中点,则点E(2,0),圆的半径为1,则点B(1,0),当点P在x轴下方时,如图1,∵tan∠MBC=2,故设直线BP的表达式为:y=﹣2x+s,将点B(1,0)的坐标代入上式并解得:s=2,故直线BP的表达式为:y=﹣2x+2②,联立①②并解得:x=±2(舍去﹣2),故m=2;当点P在x轴上方时,同理可得:m=4±2(舍去4﹣2);故m=2或4+2;②存在,理由:连接BN、BD、EM,则BN是△OEM的中位线,故BN=EM=,而BD==,在△BND中,BD﹣BN≤ND≤BD+BN,即﹣0.5≤ND≤+0.5,故线段DN的长度最小值和最大值分别为﹣0.5和+0.5.19.如图,在平面直角坐标系上,一条抛物线y=ax2+bx+c(a≠0)经过A(1,0)、B(3,0)、C(0,3)三点,连接BC并延长.(1)求抛物线的解析式;(2)点M是直线BC在第一象限部分上的一个动点,过M作MN∥y轴交抛物线于点N.1°求线段MN的最大值;2°当MN取最大值时,在线段MN右侧的抛物线上有一个动点P,连接PM、PN,当△PMN的外接圆圆心Q在△PMN的边上时,求点P的坐标.解:(1)把A、B、C三点的坐标代入抛物线y=ax2+bx+c(a≠0)中,得,解得,,∴抛物线的解析式为:y=x2﹣4x+3;(2)1°设直线BC的解析式为y=mx+n(m≠0),则,解得,,∴直线BC的解析式为:y=﹣x+3,设M(t,﹣t+3)(0<t<3),则N(t,t2﹣4t+3),∴MN=﹣t2+3t=﹣,∴当t=时,MN的值最大,其最大值为;2°∵△PMN的外接圆圆心Q在△PMN的边上,∴△PMN为直角三角形,由1°知,当MN取最大值时,M(),N(),①当∠PMN=90°时,PM∥x轴,则P点与M点的纵坐标相等,∴P点的纵坐标为,当y=时,y=x2﹣4x+3=,解得,x=,或x=(舍去),∴P();②当∠PNM=90°时,PN∥x轴,则P点与N点的纵坐标相等,∴P点的纵坐标为﹣,当y=﹣时,y=x2﹣4x+3=﹣,解得,x=,或x=(舍去),∴P(,);③当∠MPN=90°时,则MN为△PMN的外接圆的直径,∴△PMN的外接圆的圆心Q为MN的中点,∴Q(),半径为,过Q作QK∥x轴,与在MN右边的抛物线图象交于点K,如图②,令y=,得y=x2﹣4x+3=,解得,x=<(舍),或x=,∴K(,),∴QK=>,即K点在以MN为直径的⊙Q外,设抛物线y=x2﹣4x+3的顶点为点L,则l(2,﹣1),连接LK,如图②,则L到QK的距离为,LK=,设Q点到LK的距离为h,则,∴=,∴直线LK下方的抛物线与⊙Q没有公共点,∵抛物线中NL部分(除N点外)在过N点与x轴平行的直线下方,∴抛物线中NL部分(除N点外)与⊙Q没有公共点,∵抛物线K点右边部分,在过K点与y轴平行的直线的右边,∴抛物线K点右边部分与⊙Q没有公共点,综上,⊙Q与MN右边的抛物线没有交点,∴在线段MN右侧的抛物线上不存在点P,使△PMN的外接圆圆心Q在MN边上;综上,点P的坐标为()或().20.如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点(x,y)的坐标值:x…﹣10123…y…03430…(1)求出这条抛物线的解析式;(2)如图1,直线y=kx+1(k<0)与抛物线交于P,Q两点,交抛物线的对称轴于点T,若△QMT的面积是△PMT面积的两倍,求k的值;(3)如图2,点D是第四象限内抛物线上一动点,过点D作DF⊥x轴,垂足为F,△ABD的外接圆与DF相交于点E.试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.解:(1)根据表格可得出A(﹣1,0),B(3,0),C(0,3),设抛物线解析式为y=a(x+1)(x﹣3),将C(0,3)代入,得:3=a(0+1)(0﹣3),解得:a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3,∴该抛物线解析式为y=﹣x2+2x+3;(2)设P(x1,y1),Q(x2,y2),令y=kx+1=﹣x2+2x+3,整理得:x2+(k﹣2)x﹣2=0,∴x1+x2=2﹣k,x1x2=﹣2①,∵△QMT的面积是△PMT面积的两倍,∴MT•(x2﹣1)=2×MT•(1﹣x1),∴2x1+x2=3,即x2=3﹣2x1②,将②代入①得:2x12﹣3x1﹣2=0,解得:x1=2或,∴或,∴k=1或,∵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论