2025《初中数学》专题突破专题54 一次函数中的45°角问题(含答案及解析)_第1页
2025《初中数学》专题突破专题54 一次函数中的45°角问题(含答案及解析)_第2页
2025《初中数学》专题突破专题54 一次函数中的45°角问题(含答案及解析)_第3页
2025《初中数学》专题突破专题54 一次函数中的45°角问题(含答案及解析)_第4页
2025《初中数学》专题突破专题54 一次函数中的45°角问题(含答案及解析)_第5页
已阅读5页,还剩55页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

例题精讲例题精讲【例1】.如图,在平面直角坐标系中,点A(12,0),点B(0,4),点P是直线y=﹣x﹣1上一点,且∠ABP=45°,则点P的坐标为.变式训练【变1-1】.如图,在平面直角坐标系中,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B将直线AB绕点B顺时针旋转45°,交x轴于点C,则直线BC的函数表达式为.【变1-2】.如图,已知点A:(2,﹣5)在直线l1:y=2x+b上,l1和l2:y=kx﹣1的图象交于点B,且点B的横坐标为8,将直线l1绕点A逆时针旋转45°与直线l2,相交于点Q,则点Q的坐标为.【例2】.如图,在平面直角坐标系中,一次函数y=2x+4的图象分别与x轴,y轴相交于A,B两点.将直线AB绕点A逆时针旋转45°后,与y轴交于点C,则点C的坐标为.变式训练【变2-1】.如图,在平面直角坐标系中,一次函数y=2x﹣2的图象分别交x、y轴于点A、B,直线BC与x轴正半轴交于点C,若∠ABC=45°,则直线BC的函数表达式是()A.y=3x﹣2 B.y=x﹣2 C.y=x﹣2 D.y=﹣x﹣2【变2-2】.如图,一次函数y=2x+b的图象经过点M(1,3),且与x轴,y轴分别交于A,B两点.(1)填空:b=;(2)将该直线绕点A顺时针旋转45°至直线l,过点B作BC⊥AB交直线l于点C,求点C的坐标及直线l的函数表达式.1.如图,直线y=x+1与坐标轴交于A、B两点,点C在x轴上,若∠ABO+∠ACO=45°,则点C的坐标为.2.如图,在平面直角坐标系xOy中,直线y=﹣x+m(m≠0)分别交x轴,y轴于A,B两点,已知点C(2,0).设点P为线段OB的中点,连接PA,PC,若∠CPA=45°,则m的值是.3.如图,在平面直角坐标系中,直线AB的解析式为y=﹣x+3.点C是AO上一点且OC=1,点D在线段BO上,分别连接BC,AD交于点E,若∠BED=45°,则OD的长是.4.如图,直线y=4x+4交x轴于点A,交y轴于点B,直线BC:y=﹣x+4交x轴于点C,点P为线段BC上一点,∠PAB=45°,求点P的坐标.5.如图,正比例函数y=kx经过点A,点A在第二象限,过点A作AC⊥y轴于点C,AC=2,且△AOC的面积为5.(1)求正比例函数的解析式;(2)若直线y=ax上有一点B满足∠AOB=45°,且OB=AB,求a的值.6.如图,在平面直角坐标系中,A、B、C为坐标轴上的三个点,且OA=OB=OC=6,过点A的直线AD交直线BC于点D,交y轴于点E,△ABD的面积为18.(1)求点D的坐标.(2)求直线AD的表达式及点E的坐标.(3)过点C作CF⊥AD,交直线AB于点F,求点F的坐标.7.如图1,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+3分别交x、y轴于点B、A.(1)如图1,点C是直线AB上不同于点B的点,且CA=AB.则点C的坐标为;(2)点C是直线AB外一点,满足∠BAC=45°,求出直线AC的解析式;(3)如图3,点D是线段OB上一点,将△AOD沿直线AD翻折,点O落在线段AB上的点E处,点M在射线DE上,在x轴的正半轴上是否存在点N,使以M、A、N、B为顶点的四边形是平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.8.直角坐标系中,点A的坐标为(9,4),AB⊥x轴于点B,AC垂直y轴于点C,点D为x轴上的一个动点,若CD=2.(1)直接写出点D的坐标;(2)翻折四边形ACOB,使点C与点D重合,直接写出折痕所在直线的解析式;(3)在线段AB上找点E使∠DCE=45°.①直接写出点E的坐标;②点M在线段AC上,点N在线段CE上,直接写出当△EMN是等腰三角形且△CMN是直角三角形时点M的坐标.9.如图,在平面直角坐标系中,A(0,4)、B(6,0)为坐标轴上的点,点C为线段AB的中点,过点C作DC⊥x轴,垂足为D,点E为y轴负半轴上一点,连接CE交x轴于点F,且CF=FE.(1)直接写出E点的坐标;(2)过点B作BG∥CE,交y轴于点G,交直线CD于点H,求四边形ECBG的面积;(3)直线CD上是否存在点Q使得∠ABQ=45°,若存在,请求出点Q的坐标,若不存在,请说明理由.10.在平面直角坐标系中,点A的坐标为(﹣6,6),以A为顶点的∠BAC的两边始终与x轴交于B、C两点(B在C左面),且∠BAC=45°.(1)如图1,连接OA,当AB=AC时,试说明:OA=OB.(2)过点A作AD⊥x轴,垂足为D,当DC=2时,将∠BAC沿AC所在直线翻折,翻折后边AB交y轴于点M,求点M的坐标.11.模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.易证:△BEC≌△CDA模型应用:如图2,已知直线l1:y=x+4与y轴交于A点,将直线l1绕着A点顺时针旋转45°至l2.(1)在直线l2上求点C,使△ABC为直角三角形;(2)求l2的函数解析式;(3)在直线l1、l2分别存在点P、Q,使得点A、O、P、Q四点组成的四边形是平行四边形?请直接写出点Q的坐标.12.在平面直角坐标系xOy中,已知点M(﹣2,﹣2),过点M作直线AB,交x轴负半轴于点A,交y轴负半轴于点B(0,m).(1)如图1,当m=﹣6时.i)求直线AB的函数表达式;ii)过点A作y轴的平行线l,点N是l上一动点,连接BN,MN,若S△MBN=S△ABO,求满足条件的点N的坐标.(2)如图2,将直线AB绕点B顺时针旋转45°后,交x轴正半轴于点C,过点C作CD⊥BC,交直线AB于点D.试问:随着m值的改变,点D的横坐标是否发生变化?若不变,求出点D的横坐标;若变化,请说明理由.13.在平面直角坐标系中,直线y=﹣2x﹣4与x轴,y轴分别交于点A、B,与直线y=3交于点C,点D为直线y=3上点C右侧的一点.(1)如图1,若△ACD的面积为6,则点D的坐标为;(2)如图2,当∠CAD=45°时,求直线AD的解析式;(3)在(2)的条件下,点E为直线AD上一点,设点E的横坐标为m,△ACE的面积为S,求S关于m的函数关系式,并直接写出自变量m的取值范围.14.(1)基本图形的认识:如图1,在四边形ABCD中,∠B=∠C=90°,点E是边BC上一点,AB=EC,BE=CD,连结AE、DE,求证:△AED是等腰直角三角形.(2)基本图形的构造:如图2,在平面直角坐标系中,A(2,0),B(0,3),连结AB,过点A在第一象限内作AB的垂线,并在垂线截取AC=AB,求点C的坐标;(3)基本图形的应用:如图3,一次函数y=﹣2x+2的图象与y轴交于点A,与x轴交于点B,直线AC交x轴于点D,且∠CAB=45°,求点D的坐标.15.【模型建立】:(1)如图①,在Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;【模型应用】:(2)如图②,已知直线l1:y=﹣2x+4与x轴交于点A、与y轴交于点B,将直线l1绕点A顺时针旋转45°至直线l2,求直线l2的函数表达式;(3)如图③,平面直角坐标系内有一点B(﹣4,﹣6),过点B作BA⊥x轴于点A、BC⊥y轴于点C,点P是线段AB上的动点,点D是直线y=3x+3上的动点且在第三象限内.试探究△CPD能否成为等腰直角三角形?若能,求出点D的坐标,若不能,请说明理由.

例题精讲例题精讲【例1】.如图,在平面直角坐标系中,点A(12,0),点B(0,4),点P是直线y=﹣x﹣1上一点,且∠ABP=45°,则点P的坐标为(5,﹣6).解:如图所示,将线段AB绕点B顺时针旋转90°得到线段BC,则点C的坐标为(﹣4,﹣8),由于旋转可知,△ABC为等腰直角三角形,令线段AC和线段BP交于点M,则M为线段AC的中点,所以点M的坐标为(4,﹣4),又B为(0,4),设直线BP为y=kx+b,将点B和点M代入可得,解得k=﹣2,b=4,可得直线BP为y=﹣2x+4,由于点P为直线BP和直线y=﹣x﹣1的交点,则由解得,所以点P的坐标为(5,﹣6),故答案为(5,﹣6).变式训练【变1-1】.如图,在平面直角坐标系中,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B将直线AB绕点B顺时针旋转45°,交x轴于点C,则直线BC的函数表达式为y=3x+4.解:∵一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,∴令x=0,得y=4,令y=0,则x=2,∴A(2,0),B(0,4),∴OA=2,OB=4,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,∵∠ABC=45°,∴△ABF是等腰直角三角形,∴AB=AF,∵∠OAB+∠ABO=∠OAB+∠EAF=90°,∴∠ABO=∠EAF,在△ABO和△FAE中,∴△ABO≌△FAE(AAS),∴AE=OB=4,EF=OA=2,∴F(﹣2,﹣2),设直线BC的函数表达式为:y=kx+4,把F的坐标代入得,﹣2=﹣2k+4,解得k=3,∴直线BC的函数表达式为:y=3x+4,故答案为:y=3x+4.【变1-2】.如图,已知点A:(2,﹣5)在直线l1:y=2x+b上,l1和l2:y=kx﹣1的图象交于点B,且点B的横坐标为8,将直线l1绕点A逆时针旋转45°与直线l2,相交于点Q,则点Q的坐标为(,﹣).解:过Q作QE⊥AQ交AB于E,过Q作FG∥y轴,过A作AF⊥FG于F,过E作EG⊥FG于G,将点A的坐标代入y=2x+b中,得﹣5=2×2+b,解得:b=﹣9,∴直线l1的解析式为y=2x﹣9,将x=8代入y=2x﹣9中,解得:y=7,∴点B的坐标为(8,7),将点B的坐标代入y=kx﹣1中,得7=8k﹣1,解得:k=1,∴直线l2的解析式为y=x﹣1,∵∠G=∠F=∠EQA=90°,∴∠EQG+∠AQF=90°,∠QAF+∠AQF=90°,∴∠EQG=∠QAF,∵∠EQA=90°,∠QAE=45°,∴△AQE是等腰直角三角形,∴EQ=QA,在△EGQ和△QFA中,,∴△EGQ≌△QFA(AAS),∴EG=QF,QG=AF,设Q(a,a﹣1),∵A(2,﹣5),∴AF=2﹣a,FQ=a+4,GE=a+4,QG=2﹣a,∴点E坐标(2a+4,1),把E(2a+4,1)代入y=2x﹣9中,得4a+8﹣9=1,解得:a=,∴点Q的坐标为(,﹣).故答案为:(,﹣).【例2】.如图,在平面直角坐标系中,一次函数y=2x+4的图象分别与x轴,y轴相交于A,B两点.将直线AB绕点A逆时针旋转45°后,与y轴交于点C,则点C的坐标为(0,﹣6).解:一次函数y=2x+4的图象分别与x轴,y轴相交于A,B两点.∴A(﹣2,0),B(0,4),∴OA=2,OB=4,作DB⊥AB交直线AC于D,过点D作DE⊥y轴与E,∵∠BAD=45°,∴△BAD是等腰直角三角形,∴AB=DB,∵∠OAB+∠ABO=∠ABO+∠DBE=90°,∴∠OAB=∠DBE,在△ABO和△BDE中,∴△ABO≌△BDE(AAS),∴BE=OA=2,DE=BO=4,∴D(﹣4,6),设直线AC的函数表达式为:y=kx+4,把A、D的坐标代入得,解得,∴直线AC的函数表达式为:y=﹣3x﹣6,∴点C的坐标为(0,﹣6).故答案为:(0,﹣6).变式训练【变2-1】.如图,在平面直角坐标系中,一次函数y=2x﹣2的图象分别交x、y轴于点A、B,直线BC与x轴正半轴交于点C,若∠ABC=45°,则直线BC的函数表达式是()A.y=3x﹣2 B.y=x﹣2 C.y=x﹣2 D.y=﹣x﹣2解:∵一次函数y=2x﹣2的图象分别交x、y轴于点A、B,∴令x=0,得y=﹣2,令y=0,则x=1,∴A(1,0),B(0,﹣2),∴OA=1,OB=2,如图,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,∵∠ABC=45°,∴△ABF是等腰直角三角形,∴AB=AF,∵∠OAB+∠ABO=∠OAB+∠EAF=90°,∴∠ABO=∠EAF,∴△ABO≌△FAE(AAS),∴AE=OB=2,EF=OA=1,∴F(3,﹣1),设直线BC的函数表达式为:y=kx+b,,∴,∴直线BC的函数表达式为:y=x﹣2,故选:B.【变2-2】.如图,一次函数y=2x+b的图象经过点M(1,3),且与x轴,y轴分别交于A,B两点.(1)填空:b=1;(2)将该直线绕点A顺时针旋转45°至直线l,过点B作BC⊥AB交直线l于点C,求点C的坐标及直线l的函数表达式.解:(1)∵一次函数y=2x+b的图象经过点M(1,3),∴3=2+b,解得b=1,故答案为1;(2)∵一次函数y=2x+1的图象与x轴,y轴分别交于A,B两点.∴A(﹣,0),B(0,1),∴OA=,OB=1,作CD⊥y轴于D,∵∠BAC=45°,BC⊥AB,∴∠ACB=45°,∴AB=BC,∵∠ABO+∠BAO=90°=∠ABO+∠CBD,∴∠BAO=∠CBD,在△AOB和△BDC中,,∴△AOB≌△BDC(AAS),∴BD=OA=,CD=OB=1,∴OD=OB﹣BD=,∴C(1,),设直线l的解析式为y=mx+n,把A(﹣,0),C(1,)代入得,解得,∴直线l的解析式为y=x+.1.如图,直线y=x+1与坐标轴交于A、B两点,点C在x轴上,若∠ABO+∠ACO=45°,则点C的坐标为(﹣2,0)(2,0).解:∵直线y=x+1与坐标轴交于A、B两点∴当x=0时,y=1;当y=0时,x=﹣3∴点A(0,1),点B(﹣3,0)如图:取点D(﹣1,0),当点C在原点右边,设点C(a,0)∵点A(0,1),点D(﹣1,0),点B(﹣3,0)∴OA=OD=1,OB=3,BD=2∴∠ADO=∠DAO=45°,AB==∴∠ABO+∠BAD=45°又∵∠ABO+∠ACO=45°∴∠ACO=∠BAD,且∠ABO=∠ABO∴△ABD∽△CBA∴即∴a=2∴点C坐标为(2,0)若点C在原点左边,记为点C1,∵∠ABO+∠ACO=45°,∠ABO+∠AC1O=45°∴∠ACO=∠AC1O且∠AOC=∠AOB=90°,AO=AO∴△ACO≌△AC1O(AAS)∴OC=OC1=2∴点C1(﹣2,0)故答案为:(2,0),(﹣2,0)2.如图,在平面直角坐标系xOy中,直线y=﹣x+m(m≠0)分别交x轴,y轴于A,B两点,已知点C(2,0).设点P为线段OB的中点,连接PA,PC,若∠CPA=45°,则m的值是12.解:作OD=OC=2,连接CD.则∠PDC=45°,如图,由y=﹣x+m可得A(m,0),B(0,m).∴OA=OB,∴∠OBA=∠OAB=45°.当m<0时,∠APC>∠OBA=45°,所以,此时∠CPA>45°,故不合题意.∴m>0.∵∠CPA=∠ABO=45°,∴∠BPA+∠OPC=∠BAP+∠BPA=135°,即∠OPC=∠BAP,∴△PCD∽△APB,∴,即=,解得m=12.故答案是:12.3.如图,在平面直角坐标系中,直线AB的解析式为y=﹣x+3.点C是AO上一点且OC=1,点D在线段BO上,分别连接BC,AD交于点E,若∠BED=45°,则OD的长是.解:方法一:在x轴负半轴截取OF=,过点F作FH⊥AF交AD的延长线于点H,过点H作HP⊥x轴于点P,∵OC:OB=1:4,OF:OA=÷3=1:4,∴将△BOC逆时针旋转90°时,再将点B平移到与点A重合时,此时的∠FAO和∠CBO重合,∴∠FAO=∠CBO,∵FH⊥AF,∴∠AFO+∠HFP=90°,而∠AFO+∠FAO=90°,∴∠FAO=∠HFP=∠CBO,∴BC∥FH,∴∠FHA=∠BED=45°,∴△AFH为等腰直角三角形,∴AF=FH,而∠AOF=∠FPH,∠FPH=∠AFO,∴△AOF≌△FPH(AAS),∴PF=AO=3,PH=OF=,故OP=FP﹣OF=3﹣=,故点H(,﹣),设直线AH的表达式为y=kx+b,则,解得,故直线AH的表达式为y=﹣x+3,令y=0,则y=﹣x+3=0,解得:x=,故点D(,0),故OD=,故答案为.方法二:过点A作x轴的平行线MN,交过点E与y轴的平行线于点M,交过点F与y轴的平行线于点N,由点B、C的坐标得,直线BC的表达式为y=﹣x+1,同理可证:△EMA≌△ANF(AAS),则AN=ME=3+m﹣1=m+2,NF=AM=m,则点F的坐标为(﹣m﹣2,3﹣m),将点F的坐标代入直线BC的表达式并解得m=,故点E的坐标为(,),由点A、E的坐标得,直线AE的表达式为y=﹣x+3,令y=﹣x+3=0,解得x=,故OD=,故答案为.4.如图,直线y=4x+4交x轴于点A,交y轴于点B,直线BC:y=﹣x+4交x轴于点C,点P为线段BC上一点,∠PAB=45°,求点P的坐标.解:由题可得A(﹣1,0),B(0,4),C(4,0),设P(m,4﹣m),过点P做PD⊥AB,∴AB=,AC=5,△ABC的面积==+××PD,∴PD=m,∵∠PAB=45°,∴AP=m,∴(m)2=(4﹣m)2+(m+1)2,∴m=,∴P(,);5.如图,正比例函数y=kx经过点A,点A在第二象限,过点A作AC⊥y轴于点C,AC=2,且△AOC的面积为5.(1)求正比例函数的解析式;(2)若直线y=ax上有一点B满足∠AOB=45°,且OB=AB,求a的值.解:(1)∵AC⊥y轴.∴∠ACO=90°∵△AOC的面积为5,∴S△AOC=AC•OC=5,又∵AC=2,∴OC=5.∴A(﹣2,5),将点A(﹣2,5)代入y=kx,解得k=﹣,∴正比例函数的解析式为y=﹣x;(2)①当点B在第二象限时,如图,∵∠AOB=45°,且OB=AB,∴△AOB是等腰直角三角形.∴∠ABO=90°,∴∠ABF+∠EBO=90°,如图,过B作BE⊥x轴于E,交CA延长线于点F.∵∠FEO=∠EOC=∠ACO=90°,∴四边形CFEO是矩形,∠CFB=90°,∴∠ABF+∠FAB=90°,∴∠EBO=∠FAB,∴△EBO≌△FAB(AAS).∴BE=AF,EO=FB.又∵OC=FE=FB+BE=5,AC=CF﹣AF=2,∴EO+BE=5,EO﹣BE=2,解得:EO=,BE=.∴B(﹣,),将B(﹣,)代入y=ax,解得a=﹣.∴a=﹣.②当点B在第一象限时,OB1=OB,过点O作OB1⊥OB,则∠AOB1=45°,如图所示,过点B1作B1G⊥x轴于点G,则∠B1GO=∠BEO=90°,又∵∠B1OB=90°,∴∠B1OG+∠BOE=90°,∵∠BOE+∠OBE=90°,∴∠OBE=∠B1OG,∴△OBE≌△B1OG(AAS),∴OE=B1G=,BE=OG=,∴B1(,),将B1(,)代入y=a1x,解得a1=.综上,a的值为﹣或.6.如图,在平面直角坐标系中,A、B、C为坐标轴上的三个点,且OA=OB=OC=6,过点A的直线AD交直线BC于点D,交y轴于点E,△ABD的面积为18.(1)求点D的坐标.(2)求直线AD的表达式及点E的坐标.(3)过点C作CF⊥AD,交直线AB于点F,求点F的坐标.解:(1)由题可得,B(6,0),C(0,6),设BC为y=kx+b(k≠0),则,解得,∴BC的解析式为y=﹣x+6,∵OA=OB=6,∴AB=12,∵△ABD的面积为18,∴12×yD=18,解得yD=3,当y=3时,3=﹣x+6,解得x=3,∴点D的坐标为(3,3).(2)由题可得,A(﹣6,0),设直线AD的表达式为y=mx+n(m≠0),则,解得,∴直线AD的表达式为y=x+2,令x=2,则y=2,∴点E的坐标为(0,2).(3)∵CF⊥AD,CO⊥AB,∴∠FCO+∠AFC=90°,∠EAO+∠AFC=90°,∴∠FCO=∠EAO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴FO=EO=2,∴F(2,0).7.如图1,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+3分别交x、y轴于点B、A.(1)如图1,点C是直线AB上不同于点B的点,且CA=AB.则点C的坐标为(﹣4,6);(2)点C是直线AB外一点,满足∠BAC=45°,求出直线AC的解析式;(3)如图3,点D是线段OB上一点,将△AOD沿直线AD翻折,点O落在线段AB上的点E处,点M在射线DE上,在x轴的正半轴上是否存在点N,使以M、A、N、B为顶点的四边形是平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.解:(1)如图1,直线y=﹣x+3,当x=0时,y=3;当y=0时,由﹣x+3=0,得x=4,∴A(0,3),B(4,0);∵CA=AB,且点C不同于点B,∴点A是线段BC的中点,即点C与点B关于点A对称,∴点C的横坐标为﹣4,当x=﹣4时,y=﹣×(﹣4)+3=6,∴C(﹣4,6),故答案为:(﹣4,6).(2)如图2,射线AC在直线AB的上方,射线AC′在直线AB的下方,∠BAC=∠BAC′=45°;作线段AB的垂直平分线交AC于点G,交AC′于点H,交AB于点Q,连接BG、BH,则Q(2,);作GP⊥y轴于点P,GF⊥x轴于点F,则AG=BG,AH=BH,∵BG=AG,BH=AH,∴∠GBA=∠BAC=45°,∠HBA=∠BAC′=45°,∴∠BGA=∠GAH=∠AHB=90°,∴四边形AHBG是正方形;∵∠AGB+∠AOB=180°,∴∠GBF+∠OAG=180°,∵∠GAP+∠OAG=180°,∴∠GBF=∠GAP,∵∠GFB=∠GPA=90°,∴△GBF≌△GAP(AAS),∴BF=AP,GF=GP,∵∠FOP=∠OPG=∠GFO=90°,∴四边形OFGP是正方形,∴OF=OP,∵OB=4,OA=3,∴4﹣BF=3+AP,∴4﹣AP=3+AP,解得AP=,∴OP=OF=3+=,∴G(,);∵点H与点G关于点Q(2,)对称,∴H(,);设直线AC的解析式为y=kx+b,则,解得,∴y=x+3;设直线AC′的解析式为y=mx+n,则,解得,∴y=﹣7x+3,综上所述,直线AC的解析式为y=x+3或y=﹣7x+3.(3)存在,如图3,平行四边形AMBN以AB为对角线,延长ED交y轴于点R,设OD=r,由折叠得,∠AED=∠AOD=90°,ED=OD,∴ED=r,ED⊥AB;∵AB==5,AE=AO=3,∴BE=5﹣3=2,∵S△AOB=×3×4=6,且S△AOD+S△ABD=S△AOB,∴×3r+×5r=6,解得r=,∴ED=OD=,∴D(,0);∵∠DOR=∠DEB=90°,∠ODR=∠EDB,∴△ODR≌△EDB(ASA),∴RO=BE=2,∴R(0,﹣2),设直线DE的解析式为y=px﹣2,则p﹣2=0,解得p=,∴y=x﹣2;∵点N在x轴上,且AM∥BN,∴AM∥x轴,∴点M与点A的纵坐标相等,都等于3,当y=3时,由x﹣2=3,得x=,∴M(,3),∵BN=AM=,∴ON=4﹣=,∴N(,0);如图4,平行四边形ABNM以AB为一边,则AM∥x轴,且AM=BN=.∵ON=4+=,∴N(,0),综上所述,点N的坐标为(,0)或(,0).8.直角坐标系中,点A的坐标为(9,4),AB⊥x轴于点B,AC垂直y轴于点C,点D为x轴上的一个动点,若CD=2.(1)直接写出点D的坐标;(2)翻折四边形ACOB,使点C与点D重合,直接写出折痕所在直线的解析式;(3)在线段AB上找点E使∠DCE=45°.①直接写出点E的坐标;②点M在线段AC上,点N在线段CE上,直接写出当△EMN是等腰三角形且△CMN是直角三角形时点M的坐标.解:(1)如图1,∵点A的坐标为(9,4),AC⊥y轴于点C,∴OC=4,∵点D为x轴上的一个动点,CD=2,由勾股定理得:OD===2,∴D(2,0)或(﹣2,0);(2)分两种情况:①当D(2,0)时,如图2,连接ED,设ED=x,由翻折得CD⊥EF,CE=ED=x,∴OE=4﹣x,Rt△OED中,由勾股定理得:x2=22+(4﹣x)2,解得:x=,∴OE=4﹣=,∵∠OCD+∠CEF=∠OCD+∠CDO=90°,∴∠CEF=∠CDO,∵∠ECF=∠COD=90°,∴△FCE∽△COD,∴,即,∴FC=5,∴F(5,4),设直线EF的解析式为:y=kx+b,则,解得,∴直线EF的解析式为:y=;②当D(﹣2,0)时,如图3,连接ED,同理得:E(0,),∵△DOC∽△EOF,∴=,∴OF=2OE=3,∴F(3,0),同理得EF:y=﹣x+,综上,折痕所在直线的解析式是y=或y=﹣x+;(3)①当D(2,0)时,如图4,过E作EF⊥CD,交CD的延长线于F,过F作FH⊥y轴于H,延长AB,HF交于点G,∵∠DCE=45°,∴△CFE是等腰直角三角形,∴CF=EF,∵∠HCF+∠CFH=∠CFH+∠EFG=90°,∴∠HCF=∠EFG,∵∠CHF=∠FGE=90°,∴△CHF≌△FGE(AAS),∴CH=FG,∵OD∥FH,∴,即,∴,设FH=a,则CH=FG=2a,∵GH=OB=9,即2a+a=9,∴a=3,∴CF==3,∴CE=CF=3,Rt△ACE中,AE===3,∴BE=4﹣3=1,∴E(9,1);当D(﹣2,0)时,如图5,∠DCB>90°,此种情况不存在符合条件的点E,综上,点E的坐标是(9,1);②i)当∠CMN=90°,MN=EN时,如图6,由①知:AE=3,∵MN∥AE,∴,即,∴,设MN=b,则CM=3b,EN=b,∴CN=b,∵CE=3,∴3=b+b,解得:b=,∴CM=3b=10﹣,∴M(10﹣,4);ii)当∠CNM=90°,MN=EN时,如图7,∵∠CNM=∠CAE=90°,∠MCN=∠ACE,∴△MCN∽△ECA,∴=3,设MN=m,则CN=3n,EN=n,∴CE=3n+n=3,∴n=,∴CM=n=,∴M(,4);综上,点M的坐标是(10﹣,4)或(,4).9.如图,在平面直角坐标系中,A(0,4)、B(6,0)为坐标轴上的点,点C为线段AB的中点,过点C作DC⊥x轴,垂足为D,点E为y轴负半轴上一点,连接CE交x轴于点F,且CF=FE.(1)直接写出E点的坐标;(2)过点B作BG∥CE,交y轴于点G,交直线CD于点H,求四边形ECBG的面积;(3)直线CD上是否存在点Q使得∠ABQ=45°,若存在,请求出点Q的坐标,若不存在,请说明理由.解:(1)∵CD⊥x轴,∴∠CDF=90°=∠EOF,又∵∠CFD=∠EFO,CF=EF,∴△CDF≌△EOF(AAS),∴CD=OE,又∵A(0,4),B(6,0),∴OA=4,OB=6,∵点C为AB的中点,CD∥y轴,∴CD=OA=2,∴OE=2,∴E(0,﹣2);(2)设直线CE的解析式为y=kx+b,∵C为AB的中点,A(0,4),B(6,0),∴C(3,2),∴,解得,∴直线CE的解析式为y=x﹣2,∵BG∥CE,∴设直线BG的解析式为y=x+m,∴×6+m=0,∴m=﹣8,∴G点的坐标为(0,﹣8),∴AG=12,∴S四边形ECBG=S△ABG﹣S△ACE=×AE×OD=×6×3=27.(3)直线CD上存在点Q使得∠ABQ=45°,分两种情况:如图1,当点Q在x轴的上方时,∠ABQ=45°,过点A作AM⊥AB,交BQ于点M,过点M作MH⊥y轴于点H,则△ABM为等腰直角三角形,∴AM=AB,∵∠HAM+∠OAB=∠OAB+∠ABO=90°,∴∠HAM=∠ABO,∵∠AHM=∠AOB=90°,∴△AMH≌△BAO(AAS),∴MH=AO=4,AH=BO=6,∴OH=AH+OA=6+4=10,∴M(4,10),∵B(0,6),∴直线BM的解析式为y=﹣5x+30,∵C(3,2),CD∥y轴,∴C点的横坐标为3,∴y=﹣5×3+30=15,∴Q(3,15).如图2,当点Q在x轴下方时,∠ABQ=45°,过点A作AN⊥AB,交BQ于点N,过点N作NG⊥y轴于点G,同理可得△ANG≌△BAO,∴NG=AO=4,AG=OB=6,∴N(﹣4,﹣2),∴直线BN的解析式为y=x﹣,∴Q(3,﹣).综上所述,点Q的坐标为(3,15)或(3,﹣).10.在平面直角坐标系中,点A的坐标为(﹣6,6),以A为顶点的∠BAC的两边始终与x轴交于B、C两点(B在C左面),且∠BAC=45°.(1)如图1,连接OA,当AB=AC时,试说明:OA=OB.(2)过点A作AD⊥x轴,垂足为D,当DC=2时,将∠BAC沿AC所在直线翻折,翻折后边AB交y轴于点M,求点M的坐标.解:(1)∵AB=AC,∠BAC=45°,∴∠ABC=∠ACB=67.5°.过点A作AE⊥OB于E,如图1,∵A(﹣6,6),∴△AEO是等腰直角三角形,∠AOB=45°,∴∠BAO=67.5°=∠ABC,∴OA=OB.(2)设OM=x,当点C在点D右侧时,如图2,连接CM,过点A作AE⊥y轴于点E,由∠BAM=∠DAE=90°,可知:∠BAD=∠MAE;∴在△BAD和△MAE中,,∴△BAD≌△MAE.∴BD=EM=6﹣x.又∵AC=AC,∠BAC=∠MAC,∴△BAC≌△MAC.∴BC=CM=8﹣x.在Rt△COM中,由勾股定理得:OC2+OM2=CM2,即42+x2=(8﹣x)2,解得:x=3,∴M点坐标为(0,3).当点C在点D左侧时,如图3,连接CM,过点A作AF⊥y轴于点F,同理,△BAD≌△MAF,∴BD=FM=6+x.同理,△BAC≌△MAC,∴BC=CM=4+x.在Rt△COM中,由勾股定理得:OC2+OM2=CM2,即82+x2=(4+x)2,解得:x=6,∴M点坐标为(0,﹣6).综上,M的坐标为(0,3)或(0,﹣6).11.模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.易证:△BEC≌△CDA模型应用:如图2,已知直线l1:y=x+4与y轴交于A点,将直线l1绕着A点顺时针旋转45°至l2.(1)在直线l2上求点C,使△ABC为直角三角形;(2)求l2的函数解析式;(3)在直线l1、l2分别存在点P、Q,使得点A、O、P、Q四点组成的四边形是平行四边形?请直接写出点Q的坐标.(1)解:过点B作BC⊥AB于点B,交l2于点C,过C作CD⊥x轴于D,如图2①,∵∠BAC=45°,∴△ABC为等腰Rt△,∵△CBD≌△BAO,∴BD=AO,CD=OB,∵直线l1:y=x+4,∴A(0,4),B(﹣3,0),①当∠ABC=90°时,∵△CDB≌△BAO,∴BD=AO=4.CD=OB=3,∴OD=4+3=7,∴C(﹣7,3);②当∠ACB=90°时,如图2②,同理:△CDB≌△AEC,∴AE=CD,BD=CE,∴AE=OA﹣BD=OB+BD,即4﹣BD=3+BD,∴BD=,∴OD=CD=3.5∴C(﹣3.5,3.5),综上,在直线l2点C的坐标为(﹣7,3)或(﹣3.5,3.5)时,△ABC为直角三角形;(2)设l2的解析式为y=kx+b(k≠0),∵A(0,4),C(﹣7,3);∴,∴,∴l2的解析式:y=x+4;(3)如图2,①当AO为边时,∵A(0,4),∴OA=4,设Q1的横坐标为x,则Q1(x,x+4),P(x,x+4),∵四边形AOPQ是平行四边形,∴PQ1=OA=4,即x+4﹣(x+4)=4,或x+4﹣(x+4)=4,解得x=﹣或∴Q1(﹣,)或(,).②当AO为对角线时,Q3与Q2重合.综上,存在符合条件的平行四边形,且Q点的坐标为(﹣,)或(,).12.在平面直角坐标系xOy中,已知点M(﹣2,﹣2),过点M作直线AB,交x轴负半轴于点A,交y轴负半轴于点B(0,m).(1)如图1,当m=﹣6时.i)求直线AB的函数表达式;ii)过点A作y轴的平行线l,点N是l上一动点,连接BN,MN,若S△MBN=S△ABO,求满足条件的点N的坐标.(2)如图2,将直线AB绕点B顺时针旋转45°后,交x轴正半轴于点C,过点C作CD⊥BC,交直线AB于点D.试问:随着m值的改变,点D的横坐标是否发生变化?若不变,求出点D的横坐标;若变化,请说明理由.解:(1)i)、∵m=﹣6,∴B(0,﹣6),∴设直线AB的表达式为y=kx﹣6,∵点M(﹣2,﹣2)在直线AB上,∴﹣2=﹣2k﹣6,∴k=﹣2,∴直线AB的表达式为y=﹣2x﹣6;ii)、如图1,由i)知,直线AB的表达式为y=﹣2x﹣6,令y=0,则﹣2x﹣6=0,∴x=﹣3,∴A(﹣3,0),∴直线l为x=﹣3,∴设N(﹣3,t),∴AN=|t|,∵A(﹣3,0),B(0,﹣6),∴OA=3,OB=6,∴S△AOB=OA•OB=×3×6=9,∵S△MBN=S△ABO,∴S△MBN=S△ABO=,过点M作MF⊥AN于F,过点B作ME⊥AN于E,∴MF=1,BE=3,∴S△MBN=S△BAN﹣S△AMN=AN•BE﹣AN•FM=(BE﹣MF)=|t|(3﹣1)=|t|=,∴t=±,∴N(﹣3,)或(﹣3,﹣);(2)如图2,∵∠ABC=45°,∠BCD=90°,∴∠ADC=45°=∠ABC,∴CD=CB,∴△BDC是等腰直角三角形,∵M(﹣2,﹣2),B(0,m),∴直线AB的表达式为y=x+m,设点C(a,0),分别过点D,B作y轴的垂线,过点C作x的垂线,交前两条直线和y轴于点G,H,L,则∠H=∠G=∠OCH=∠OBH=90°,∴四边形OBHC是矩形,∴OC=BH,∵∠G=∠BCD=90°,∴∠CDG+∠DCG=∠DCG+∠BCH=90°,∴∠CDG=∠BCH,∴△DCG≌△CBH(AAS),∴BH=OC=CG=|a|,CH=DG=|m|,∴D(m+a,a),∴a=•(m+a)+m,∴m2+ma+4m=0,∵m≠0,∴m+a=﹣4,即点D的横坐标为﹣4,保持不变.13.在平面直角坐标系中,直线y=﹣2x﹣4与x轴,y轴分别交于点A、B,与直线y=3交于点C,点D为直线y=3上点C右侧的一点.(1)如图1,若△ACD的面积为6,则点D的坐标为(,3);(2)如图2,当∠CAD=45°时,求直线AD的解析式;(3)在(2)的条件下,点E为直线AD上一点,设点E的横坐标为m,△ACE的面积为S,求S关于m的函数关系式,并直接写出自变量m的取值范围.解:(1)如图1,对于直线y=﹣2x﹣4,当y=0时,由﹣2x﹣4=0得,x=﹣2,∴A(﹣2,0);当y=3时,由﹣2x﹣4=3得,x=﹣,∴C(﹣,3),设D(r,3),∵点D在点C右侧,∴CD=r+,由题意,得×3(r+)=6,解得,r=,∴D(,3),故答案为:D(,3).(2)如图2,过点D作DG⊥AC于点G,过点G作MN⊥x轴于点N,交直线y=3于点M,则∠AGD=∠GNA=90°,∵直线y=3与x轴平行,∴∠DMG=180°﹣∠GNA=90°=∠GNA,∵∠GAD=45°,∴∠GDA=45°=∠GAD,∴DG=GA,∵∠DGM=90°﹣∠AGN=∠GAN,∴△DGM≌△GAN(AAS),∴GM=AN,DM=GN,设AN=t,则N(﹣2﹣t,0),∵点G在直线y=﹣2x﹣4上,∴yG=﹣2(﹣2﹣t)﹣4=2t,∴G(﹣2﹣t,2t),∵M(﹣2﹣t,3),∴GM=3﹣2t,由GM=AN得,3﹣2t=t,解得t=1,∴N(﹣3,0),M(﹣3,3),∵DM=GN=2t=2,∴D(﹣1,3),设直线AD的解析式为y=kx+b,则,解得,∴y=3x+6.(3)由(1)、(2)得,C(﹣,3),D(﹣1,3),∴CD=﹣1﹣(﹣)=,∴S△ACD=××3=,过点E作直线y=3的垂线,垂足为点F,∵点E在直线y=3x+6上,且点E的横坐标为m,∴E(m,3m+6),如图3,点E在线段AD上,则﹣2<m≤﹣1,此时,EF=3﹣(3m+6)=﹣3m﹣3,由S△ACE=S△ACD﹣S△ECD得,S=﹣×(﹣3m﹣3)=m+;如图4,点E在线段AD的延长线上,则m>﹣1,此时,EF=3m+6﹣3=3m+3,由S△ACE=S△ACD+S△ECD得,S=+×(3m+3)=m+,∴当m>﹣2时,S=m+;如图5,点E在线段DA的延长线上,则m<﹣2,此时,EF=3﹣(3m+6)=﹣3m﹣3,由S△ACE=S△ECD﹣S△ACD得,S=×(﹣3m﹣3)﹣=﹣m﹣,综上所述,.14.(1)基本图形的认识:如图1,在四边形ABCD中,∠B=∠C=90°,点E是边BC上一点,AB=EC,BE=CD,连结AE、DE,求证:△AED是等腰直角三角形.(2)基本图形的构造:如图2,在平面直角坐标系中,A(2,0),B(0,3),连结AB,过点A在第一象限内作AB的垂线,并在垂线截取AC=AB,求点C的坐标;(3)基本图形的应用:如图3,一次函数y=﹣2x+2的图象与y轴交于点A,与x轴交于点B,直线AC交x轴于点D,且∠CAB=45°,求点D的坐标.(1)证明:∵在△ABE和△ECD中,,∴△ABE≌△ECD(SAS),∴AE=DE,∠AEB=∠EDC,在Rt△EDC中,∠C=90°,∴∠EDC+∠DEC=90°.∴∠AEB+∠DEC=90°.∵∠AEB+∠DEC+∠AED=180°,∴∠AED=90°.∴△AED是等腰直角三角形;(2)解:过点C作CH⊥x轴于点H,如图2,则∠AHC=90°.∴∠AOB=∠BAC=∠AHC=90°,∴∠OAB=180°﹣90°﹣∠HAC=90°﹣∠HAC=∠HCA.在△AOB和△CHA中,,∴△AOB≌△CHA(AAS),∴AO=CH,OB=HA,∵A(2,0),B(0,3),∴AO=2,OB=3,∴AO=CH=2,OB=HA=3,∴OH=OA+AH=5,∴点C的坐标为(5,2);(3)解:如图3,过点B作BE⊥AB,交AD于点E,过点E作EF⊥OD,交OD于点F,把x=0代入y=﹣2x+2中,得y=2,∴点A的坐标为(0,2),∴OA=2,把y=0代入y=﹣2x+2,得﹣2x+2=0,解得x=1,∴点B的坐标为(1,0),∴OB=1,∵AO⊥OB,EF⊥BD,∴∠AOB=∠BFE=90°,∵AB⊥BE,∴∠ABE=90°,∠BAE=45°,∴AB=BE,∠ABO+∠EB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论