版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届四川省广元市高二上数学期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知中心在坐标原点,焦点在轴上的双曲线的离心率为,则其渐近线方程为()A. B.C. D.2.已知A,B,C,D是同一球面上的四个点,其中是正三角形,平面,,则该球的表面积为()A. B.C. D.3.已知函数f(x)=x(lnx-ax)有两个极值点,则实数a的取值范围是()A.(-∞,0) B.C.(0,1) D.(0,+∞)4.“若”为真命题,那么p是(
)A. B.C. D.5.棱长为1的正四面体的表面积是()A. B.C. D.6.设抛物线上一点到轴的距离是4,则点到该抛物线焦点的距离是()A.6 B.8C.9 D.107.在空间直角坐标系中,已知点A(1,1,2),B(-3,1,-2),则线段AB的中点坐标是()A.(-2,1,2) B.(-1,1,0)C.(-2,0,1) D.(-1,1,2)8.已知,则点到平面的距离为()A. B.C. D.9.已知一个乒乓球从米高的高度自由落下,每次落下后反弹的高度是原来高度的倍,则当它第8次着地时,经过的总路程是()A. B.C. D.10.已知抛物线过点,点为平面直角坐标系平面内一点,若线段的垂直平分线过抛物线的焦点,则点与原点间的距离的最小值为()A. B.C. D.11.设,,,则,,大小关系是A. B.C. D.12.在等差数列中,,则的公差为()A.1 B.2C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.已知函数是上的奇函数,,对,成立,则的解集为_________14.双曲线的渐近线方程为___________.15.设,分别是椭圆C:左、右焦点,点M为椭圆C上一点且在第一象限,若为等腰三角形,则M的坐标为___________16.已知直线与双曲线交于两点,则该双曲线的离心率的取值范围是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面为矩形,平面平面,.(1)证明:平面平面;(2)若,为棱的中点,,,求二面角的余弦值18.(12分)如图,四棱锥中,,且,(1)求证:平面平面;(2)若是等边三角形,底面是边长为3的正方形,是中点,求直线与平面所成角的正弦值.19.(12分)“中山桥”是位于兰州市中心,横跨黄河之上的一座百年老桥,如图①,桥上有五个拱形桥架紧密相连,每个桥架的内部有一个水平横梁和八个与横梁垂直的立柱,气势宏伟,素有“天下黄河第一桥”之称.如图②,一个拱形桥架可以近似看作是由等腰梯形和其上方的抛物线(部分)组成,建立如图所示的平面直角坐标系,已知,,,,立柱.(1)求立柱及横梁的长;(2)求抛物线的方程和桥梁的拱高.20.(12分)甲、乙两人参加普法知识竞赛,共有5题,选择题(1)甲、乙两人中有一个抽到选择题(2)甲、乙两人中至少有一人抽到选择题21.(12分)设数列的前项和为,且.(1)求数列的通项公式;(2)记,数列的前项和为,求不等式的解集.22.(10分)已知数列的前项和为,且,,数列是公差不为0的等差数列,满足,且,,成等比数列.(1)求数列和通项公式;(2)设,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据离心率求出的值,再根据渐近线方程求解即可.【详解】因双曲线焦点在轴上,所以渐近线方程为:,又因为双曲线离心率为,且,所以,解得,即渐近线方程为:.故选:A.2、C【解析】由题意画出几何体的图形,把、、、扩展为三棱柱,上下底面中心连线的中点与的距离为球的半径,由此能求出球的表面积【详解】把、、、扩展为三棱柱,上下底面中心连线的中点与的距离为球的半径,,,是正三角形,,,球的表面积为故选:C3、B【解析】函数f(x)=x(lnx﹣ax),则f′(x)=lnx﹣ax+x(﹣a)=lnx﹣2ax+1,令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,函数f(x)=x(lnx﹣ax)有两个极值点,等价于f′(x)=lnx﹣2ax+1有两个零点,等价于函数y=lnx与y=2ax﹣1的图象有两个交点,在同一个坐标系中作出它们的图象(如图)当a=时,直线y=2ax﹣1与y=lnx的图象相切,由图可知,当0<a<时,y=lnx与y=2ax﹣1的图象有两个交点则实数a的取值范围是(0,)故选B4、A【解析】求不等式的解集,根据解集判断p.【详解】由解得-2<x<4,所以p是.故选:A.5、D【解析】采用数形结合,根据边长,结合正四面体的概念,计算出正三角形的面积,可得结果【详解】如图由正四面体的概念可知,其四个面均是全等的等边三角形,由其棱长为1,所以,所以可知:正四面体的表面积为,故选:D6、A【解析】计算抛物线的准线,根据距离结合抛物线的定义得到答案.【详解】抛物线的焦点为,准线方程为,到轴的距离是4,故到准线的距离是,故点到该抛物线焦点的距离是.故选:A.7、B【解析】利用中点坐标公式直接求解【详解】在空间直角坐标系中,点,1,,,1,,则线段的中点坐标是,,,1,故选:B.8、A【解析】根据给定条件求出平面的法向量,再利用空间向量求出点到平面的距离.【详解】依题意,,设平面的法向量,则,令,得,则点到平面的距离为,所以点到平面的距离为.故选:A9、C【解析】根据等比数列的求和公式求解即可.【详解】从第1次着地到第2次着地经过的路程为,第2次着地到第3次着地经过的路程为,组成以为首项,公比为的等比数列,所以第1次着地到第8次着地经过的路程为,所以经过的总路程是.故答案为:C.10、B【解析】将点的坐标代入抛物线的方程,求出的值,可求得抛物线的方程,求出的坐标,分析可知点的轨迹是以点为圆心,半径为的圆,利用圆的几何性质可求得点与原点间的距离的最小值.【详解】将点的坐标代入抛物线的方程得,可得,故抛物线的方程为,易知点,由中垂线的性质可得,则点的轨迹是以点为圆心,半径为的圆,故点的轨迹方程为,如下图所示:由图可知,当点、、三点共线且在线段上时,取最小值,且.故选:B.11、A【解析】构造函数,根据的单调性可得(3),从而得到,,的大小关系【详解】考查函数,则,在上单调递增,,(3),即,,故选:【点睛】本题考查了利用函数的单调性比较大小,考查了构造法和转化思想,属基础题12、A【解析】根据等差数列性质可得方程组,求得公差.【详解】等差数列中,,,由通项公式可得解得故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意可以设,求其导数可知在上的单调性,由是上的奇函数,可知的奇偶性,进而可知在上的单调性,由可知的零点,最后分类讨论即可.【详解】设,则对,,则在上为单调递增函数,∵函数是上的奇函数,∴,∴,∴偶函数,∴在上为单调递减函数,又∵,∴,由已知得,所以当时,;当时,;当时,;当时,;若,则;若,则或,解得或或;则的解集为.故答案为:.14、【解析】将双曲线化为标准方程后求解【详解】,化简得,其渐近线方程故答案为:15、【解析】先计算出,所以,利用余弦定理求出,即可求出,即得到M的横坐标为,代入椭圆C:求出.【详解】椭圆C:,所以.因为M在椭圆上,.因为M在第一象限,故.为等腰三角形,则,所以,由余弦定理可得.过M作MA⊥x轴于A,则所以,即M的横坐标为.因为M为椭圆C:上一点且在第一象限,所以,解得:所以M的坐标为.故答案为:16、【解析】分析可知,由可求得结果.【详解】双曲线的渐近线方程为,由题意可知,.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】分析:(1)由四边形为矩形,可得,再由已知结合面面垂直的性质可得平面,进一步得到,再由,利用线面垂直的判定定理可得面,即可证得平面;(2)取的中点,连接,以为坐标原点,建立如图所示的空间直角坐标系,由题得,解得.进而求得平面和平面的法向量,利用向量的夹角公式,即可求解二面角的余弦值.详解:(1)证明:∵四边形ABCD是矩形,∴CD⊥BC.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,CD平面ABCD,∴CD⊥平面PBC,∴CD⊥PB.∵PB⊥PD,CD∩PD=D,CD、PD平面PCD,∴PB⊥平面PCD.∵PB平面PAB,∴平面PAB⊥平面PCD.(2)设BC中点为,连接,,又面面,且面面,所以面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)知PB⊥平面PCD,故PB⊥,设,可得所以由题得,解得.所以设是平面的法向量,则,即,可取.设是平面的法向量,则,即,可取.则,所以二面角的余弦值为.点睛:本题考查了立体几何中的面面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.18、(1)证明见解析(2)【解析】(1)根据线面垂直的判定定理,结合面面垂直的判定定理进行证明即可;(2)建立空间直角坐标系,利用空间向量夹角公式,结合线面角定义进行求解即可.【小问1详解】∵,∴,,又,∴,∵,面,∴面,平面ABCD,平面平面【小问2详解】∵平面平面,交AD于点F,平面,平面平面,∴平面,以为原点,,的方向分别为轴,轴的正方向建立空间直角坐标系,则,,,,,,,,设平面的法向量为,则,求得法向量为,由,所以直线与平面所成角的正弦值为.19、(1),(2),【解析】(1)根据梯形的几何性质,即可求解;(2)表示出M,N的坐标,代入抛物线方程中,结合条件解得p值,继而求得拱高.【小问1详解】由题意,知,因为ABFM是等腰梯形,由对称性知:,所以,【小问2详解】由(1)知,所以点M的横坐标为-18,则N的横坐标为-(18-5)=-13.设点M,N的纵坐标分别为y1,y2,由图形,知设抛物线的方程为,,两式相减,得2p(y2-y1)=182-132=155,解得:2p=100故抛物线的方程为x2=-100y.因此,当x=-18时,所以桥梁的拱高OH=3.24+4=7.24m.20、(1)(2)【解析】首先用列举法,求得甲、乙两人各抽一题的所有可能情况.(1)根据上述分析,分别求得“甲抽到判断题,乙抽到选择题(2)根据上述分析,求得“甲、乙两人都抽到判断题”的概率,根据对立事件概率计算公司求得“甲、乙两人中至少有一人抽到选择题【详解】把3个选择题因此基本事件的总数为.(1)记“甲抽到选择题(2)记“甲、乙两人至少有一人抽到选择题【点睛】本小题主要考查互斥事件概率计算,考查对立事件,属于基础题.21、(1)(2)【解析】(1)利用与的关系求解即可;(2)首
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云存储安全事件应急响应-洞察分析
- 有机肥替代化肥研究-第2篇-洞察分析
- 维修物联网-洞察分析
- 关于志愿者的倡议书范文800字(8篇)
- 《导论与基本原则》课件
- AI技术在医疗领域的未来展望与挑战
- 从宝洁的成功看企业战略管理的重要性
- 农产品跨境电商营销策略
- 以乐启智家庭中的音乐启蒙实践与反思
- 从教育角度看小学生阅读习惯的培养
- 投资控股合同
- 2025版国家开放大学专本科《计算机应用基础》一平台在线形考任务 (形考作业一至三)试题及答案
- 古代汉语专题-003-国开机考复习资料
- 【MOOC】信号与系统-西北工业大学 中国大学慕课MOOC答案
- 《半导体的基本知识》教学设计
- 科研团队协作管理制度
- 拓展训练融入初中体育教学的创新策略与实施路径
- 学校中层干部管理提升培训
- 服装设计基础学习通超星期末考试答案章节答案2024年
- 黑龙江省哈尔滨市第九中学校2024-2025学年高三上学期9月考试历史学科试卷
- 2024全国高中数学联赛山东赛区预赛试卷(含解析)
评论
0/150
提交评论