




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山西省新绛县第二中学高一数学第一学期期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,集合,则A∩B=()A. B.C. D.2.函数,若恰有3个零点,则a的取值范围是()A. B.C. D.3.设集合U=R,,,则图中阴影部分表示的集合为()A.{x|x≥1} B.{x|1≤x<2}C.{x|0<x≤1} D.{x|x≤0}4.函数y=log2的定义域A.(,3) B.(,+∞)C.(,3) D.[,3]5.设集合,3,,则正确的是A.3, B.3,C. D.6.已知水平放置的四边形按斜二测画法得到如图所示的直观图,其中,,,,则原四边形的面积为()A. B.C. D.7.设集合,若,则实数()A.0 B.1C. D.28.若,,,则()A. B.C. D.9.将函数的图象先向左平移,然后将所得图象上所有的点的横坐标变为原来的倍(纵坐标不变),则所得到的图象对应的函数解析式为A. B.C. D.10.已知为偶函数,当时,,当时,,则满足不等式的整数的个数为()A.4 B.6C.8 D.10二、填空题:本大题共6小题,每小题5分,共30分。11.若在幂函数的图象上,则______12.给出下列说法:①和直线都相交的两条直线在同一个平面内;②三条两两相交的直线一定在同一个平面内;③有三个不同公共点的两个平面重合;④两两相交且不过同一点的四条直线共面其中正确说法的序号是______13.圆的圆心坐标是__________14.在中,角、、所对的边为、、,若,,,则角________15.计算:______.16.经过点P(3,2),且在两坐标轴上的截距相等的直线方程为(写出一般式)___三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)判断在上的单调性,并证明你的结论;(2)是否存在,使得是奇函数?若存在,求出所有的值;若不存在,请说明理由.18.已知函数(1)若,求不等式解集;(2)若,求在区间上的最大值和最小值,并分别写出取得最大值和最小值时的x值;(3)若对任意,不等式恒成立,求实数a的取值范围19.已知函数,,.(1)若函数与的图象的一个交点的横坐标为2,求a;(2)若,求证:.20.甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分.两人4局的得分情况如下:甲6699乙79xy(1)若乙的平均得分高于甲的平均得分,求x的最小值;(2)设,,现从甲、乙两人的4局比赛中随机各选取1局,并将其得分分别记为a,b,求的概率;(3)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x的所有可能取值.(结论不要求证明)21.已知函数.(1)求的定义域;(2)判断的奇偶性并予以证明;(3)求不等式的解集.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】化简集合B,再求集合A,B的交集即可.【详解】∵集合,集合,∴.故选:B.2、B【解析】画出的图像后,数形结合解决函数零点个数问题.【详解】做出函数图像如下由得,由得故函数有3个零点若恰有3个零点,即函数与直线有三个交点,则a的取值范围,故选:B3、D【解析】先求出集合A,B,再由图可知阴影部分表示,从而可求得答案【详解】因为等价于,解得,所以,所以或,要使得函数有意义,只需,解得,所以则由韦恩图可知阴影部分表示.故选:D.4、A【解析】由真数大于0,求解对分式不等式得答案;【详解】函数y=log2的定义域需满足故选A.【点睛】】本题考查函数的定义域及其求法,考查分式不等式的解法,是中档题5、D【解析】根据集合的定义与运算法则,对选项中的结论判断正误即可【详解】解:集合,3,,则,选项A错误;2,3,,选项B错误;,选项C错误;,选项D正确故选D【点睛】本题考查了集合的定义与运算问题,属于基础题6、B【解析】根据直观图画出原图,可得原图形为直角梯形,计算该直角梯形的面积即可.【详解】过点作,垂足为则由已知可得四边形为矩形,为等腰直角三角形,根据直观图画出原图如下:可得原图形为直角梯形,,且,可得原四边形的面积为故选:B.7、B【解析】可根据已知条件,先求解出的值,然后分别带入集合A和集合B中去验证是否满足条件,即可完成求解.【详解】集合,,所以,①当时,集合,此时,成立;②当时,集合,此时,不满足题意,排除.故选:B.8、A【解析】先变形,然后利用指数函数的性质比较大小即可【详解】,因为在上为减函数,且,所以,所以,故选:A9、C【解析】把原函数解析式中的换成,得到y=sin2x+π6-π3的图象,再把的系数变成原来的【详解】将函数y=sin2x-π3的图象先向左平移,得到然后将所得图象上所有的点的横坐标变为原来的2倍(纵坐标不变),得到y=sin1故选:C10、C【解析】由时的解析式,可先求得不等式的解集.再根据偶函数性质,即可求得整个定义域内满足不等式的解集,即可确定整数解的个数.【详解】当时,,解得,所以;当时,,解得,所以.因为为偶函数,所以不等式的解集为.故整数的个数为8.故选:C【点睛】本题考查了不等式的解法,偶函数性质的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、27【解析】由在幂函数的图象上,利用待定系数法求出幂函数的解析式,再计算的值【详解】设幂函数,,因为函数图象过点,则,,幂函数,,故答案为27【点睛】本题主要考查了幂函数的定义与解析式,意在考查对基础知识的掌握情况,是基础题12、④【解析】利用正方体可判断①②的正误,利用公理3及其推论可判断③④的正误.【详解】如图,在正方体中,,,但是异面,故①错误.又交于点,但不共面,故②错误.如果两个平面有3个不同公共点,且它们共线,则这两个平面可以相交,故③错误.如图,因为,故共面于,因为,故,故即,而,故,故即即共面,故④正确.故答案为:④13、【解析】根据圆的标准方程,即可求得圆心坐标.【详解】因为圆所以圆心坐标为故答案为:【点睛】本题考查了圆的标准方程与圆心的关系,属于基础题.14、.【解析】利用余弦定理求出的值,结合角的取值范围得出角的值.【详解】由余弦定理得,,,故答案为.【点睛】本题考查余弦定理的应用和反三角函数,解题时要充分结合元素类型选择正弦定理和余弦定理解三角形,考查计算能力,属于中等题.15、【解析】利用指数幂和对数的运算性质可计算出所求代数式的值.【详解】原式.故答案为:.【点睛】本题考查指数与对数的计算,考查指数幂与对数运算性质的应用,考查计算能力,属于基础题.16、x+y-5=0或2x-3y=0【解析】当直线经过原点时,在两坐标轴上的截距相等,可得其方程为2x﹣3y=0;当直线不经过原点时,可得它的斜率为﹣1,由此设出直线方程并代入P的坐标,可求出其方程为x+y﹣5=0,最后加以综合即可得到答案【详解】当直线经过原点时,设方程为y=kx,∵直线经过点P(3,2),∴2=3k,解之得k,此时的直线方程为yx,即2x﹣3y=0;当直线不经过原点时,设方程为x+y+c=0,将点P(3,2)代入,得3+2+c=0,解之得c=﹣5,此时的直线方程为x+y﹣5=0综上所述,满足条件的直线方程为:2x﹣3y=0或x+y﹣5=0故答案为:x+y-5=0或2x-3y=0【点睛】本题给出直线经过定点且在两个轴上的截距相等,求直线的方程.着重考查了直线的基本量与基本形式等知识,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)减函数,证明见解析;(2),理由见解析【解析】(1)由单调性定义判断;(2)根据奇函数的性质由求得,然后再由奇函数定义验证【详解】(1)是上的减函数设,则,所以,,即,,所以,所以是上的减函数(2)若是奇函数,则,,时,,所以,所以为奇函数所以时,函数为奇函数18、(1)(2)当时函数取得最小值,,当时函数取得最大值;(3)【解析】(1)根据,代入求出参数的值,再解一元二次不等式即可;(2)首先由求出的值,再根据二次函数的性质求出函数在给定区间上的最值;(3)参变分离可得对任意恒成立,再利用基本不等式求出的最小值,即可得解;【小问1详解】解:因为且,所以,解得,所以,解,即,即,解得,即原不等式的解集为;【小问2详解】解:因为,所以,所以,所以,因为,所以函数在上单调递减,在上单调递增,所以当时函数取得最小值,当时函数取得最大值;【小问3详解】解:因为对任意,不等式恒成立,即对任意,不等式恒成立,即对任意恒成立,因为当且仅当,即时取等号;所以,即,所以19、(1)(2)证明见解析【解析】(1)根据题意,分析可得,变形解可得答案;(2)根据题意,设,结合二次函数的性质分析可得,当时,恒成立,即可得结论【小问1详解】根据题意,若函数与的图象的一个交点的横坐标为2,则,变形可得或,解可得;无解;故;【小问2详解】证明:设,当时,,其对称轴为,又由,则其对称轴,又由,在区间,上为增函数,则,当时,,开口向上,当时,,必有恒成立,综合可得:当是,恒成立,即恒成立20、(1)5(2)(3)6,7,8【解析】(1)由题意得,又,即可求得x的最小值;(2)利用列举法能求出古典概型的概率;(3)由题设条件能求出的可能的取值为.【小问1详解】由题意得,即.又根据题意知,,所以x的最小值此为5.【小问2详解】设“从甲、乙的4局比赛中随机各选取1局,且得分满足”为事件,记甲的4局比赛为,各局的得分分别是;乙的4局比赛为,各局的得分分别是.则从甲、乙的4局比赛中随机各选取1局,所有可能的结果有16种,它们是:,,,,,,,,,,,,,,,.而事件的结果有8种,它们是:,,,,,,,,∴事件的概率.【小问3详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 藤材再生利用-洞察及研究
- 生物等效性研究-第5篇-洞察及研究
- 湖南长沙数学试卷
- 2025年农村电商服务站农村电商物流配送模式创新与优化:运营模式研究报告
- 2022年惠州市五年级语文期末考试试卷(北师大版)
- 教育信息化2.0推动下教师信息技术与课程教学融合研究报告
- 财富管理行业2025年研究报告:金融科技创新与客户体验变革
- 小微企业创业扶持资金申请2025年政策解读与创业创新报告
- 惠州市高中三模数学试卷
- 2022年高安市小学六年级语文期末考试试卷
- GB/T 13539.6-2024低压熔断器第6部分:太阳能光伏系统保护用熔断体的补充要求
- 康复科诊疗方案及流程
- 软件外包项目介绍
- 志愿服务与志愿者精神知识考试题库大全(含答案)
- 合伙人债务承担协议书
- 普通高中学业水平合格性考试(会考)语文试题(附答案)
- 2024年桥式起重机司机(中级)职业技能考试题库(职校培训)
- 12、口腔科诊疗指南及技术操作规范
- (完整文档版)体检中心入职体检报告范本
- 2022年4月自考04184线性代数(经管类)试题及答案含评分标准
- 2023年第七届全国急救中心急救技能大赛理论考试题库-下(多选题汇总)
评论
0/150
提交评论