![2025届河北省衡水市高一上数学期末监测模拟试题含解析_第1页](http://file4.renrendoc.com/view8/M03/39/06/wKhkGWcnri-AMXENAAGxYqOUqlU118.jpg)
![2025届河北省衡水市高一上数学期末监测模拟试题含解析_第2页](http://file4.renrendoc.com/view8/M03/39/06/wKhkGWcnri-AMXENAAGxYqOUqlU1182.jpg)
![2025届河北省衡水市高一上数学期末监测模拟试题含解析_第3页](http://file4.renrendoc.com/view8/M03/39/06/wKhkGWcnri-AMXENAAGxYqOUqlU1183.jpg)
![2025届河北省衡水市高一上数学期末监测模拟试题含解析_第4页](http://file4.renrendoc.com/view8/M03/39/06/wKhkGWcnri-AMXENAAGxYqOUqlU1184.jpg)
![2025届河北省衡水市高一上数学期末监测模拟试题含解析_第5页](http://file4.renrendoc.com/view8/M03/39/06/wKhkGWcnri-AMXENAAGxYqOUqlU1185.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北省衡水市高一上数学期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若当时,恒成立,则实数的取值范围是A. B.C. D.2.设,若,则的最小值为A. B.C. D.3.在正内有一点,满足等式,,则()A. B.C. D.4.已知集合,则函数的最小值为()A.4 B.2C.-2 D.-45.设a,b是两条不同的直线,α,β是两个不同的平面,则下列正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,,则6.设和两个集合,定义集合,且,如果,,那么A. B.C. D.7.函数的部分图象大致为()A. B.C. D.8.下列说法错误的是()A.球体是旋转体 B.圆柱的母线垂直于其底面C.斜棱柱的侧面中没有矩形 D.用正棱锥截得的棱台叫做正棱台9.某几何体的三视图如图所示,则它的体积是A.B.C.D.10.将函数的图象向右平移个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的倍(纵坐标不变),则所得到的图象的函数解析式为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在正方形ABCD中,E是线段CD的中点,若,则________.12.直线与函数的图象相交,若自左至右的三个相邻交点依次为、、,且满足,则实数________13.直线与圆相交于A,B两点,则线段AB的长为__________14.已知函数在上单调递增,则实数a的取值范围为____.15.命题“,使关于的方程有实数解”的否定是_________.16.有一批材料可以建成360m长的图墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的小矩形如图所示,则围成场地的最大面积为______围墙厚度不计三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数是定义域为的任意函数.(1)求证:函数是奇函数,是偶函数;(2)如果,试求(1)中的和的表达式.18.如图,直角梯形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=2AB=4,点E为线段BC的中点,点F在线段AD上,且EF∥AB,现将四边形ABCD沿EF折起,使平面ABEF⊥平面EFDC,点P为几何体中线段AD的中点(Ⅰ)证明:平面ACD⊥平面ACF;(Ⅱ)证明:CD∥平面BPE19.已知直线:,直线:.(1)若,求与的距离;(2)若,求与的交点的坐标.20.证明:(1);(2)21.如图,在直三棱柱中,已知,,设的中点为,求证:(1);(2).
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】是奇函数,单调递增,所以,得,所以,所以,故选D点睛:本题考查函数的奇偶性和单调性应用.本题中,结合函数的奇偶性和单调性的特点,转化得到,分参,结合恒成立的特点,得到,求出参数范围2、D【解析】依题意,,根据基本不等式,有.3、A【解析】过作交于,作交于,则,可得,在中由正弦定理可得答案.【详解】过作交于,作交于,则,,在中,,,由正弦定理得.故选:A.4、D【解析】因为集合,所以,设,则,所以,且对称轴为,所以最小值为,故选D5、D【解析】由空间中直线、平面的位置关系逐一判断即可得解.【详解】解:由a,b是两条不同的直线,α,β是两个不同的平面,知:在A中,若,,则或,故A错误;在B中,若,,则,故B错误;在C中,若,,则或,故C错误;在D中,若,,,则由面面垂直的判定定理得,故D正确;故选:D【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,属中档题6、D【解析】根据的定义,可求出,,然后即可求出【详解】解:,;∴.故选D.【点睛】考查描述法的定义,指数函数的单调性,正弦函数的值域,属于基础题7、A【解析】由奇偶性定义判断对称性,再根据解析式判断、上的符号,即可确定大致图象.【详解】由题设,且定义域为R,即为奇函数,排除C,D;当时恒成立;,故当时,当时;所以,时,时,排除B;故选:A.8、C【解析】利用空间几何体的结构特征可得.【详解】由旋转体的概念可知,球体是旋转体,故A正确;圆柱的母线平行于圆柱的轴,垂直于其底面,故B正确;斜棱柱的侧面中可能有矩形,故C错误;用正棱锥截得的棱台叫做正棱台,故D正确.故选:C.9、A【解析】根据已知的三视图想象出空间几何体,然后由几何体的组成和有关几何体体积公式进行计算由几何体的三视图可知几何体为一个组合体,即一个正方体中间去掉一个圆锥体,所以它的体积是.10、A【解析】由题意利用函数的图象变换法则,即可得出结论【详解】将函数的图象向右平移个的单位长度,可得的图象,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为,故选【点睛】本题主要考查函数的图象变换法则,注意对的影响二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】详解】由图可知,,所以))所以,故,即,即得12、或【解析】设点、、的横坐标依次为、、,由题意可知,根据题意可得出关于、的方程组,分、两种情况讨论,求出的值,即可求得的值.【详解】设点、、的横坐标依次为、、,则,当时,因为,所以,,即,因为,得,因为,则,即,可得,所以,,可得,所以,;当时,因为,所以,,即,因为,得,因为,则,即,可得,所以,,可得,所以,.综上所述,或.故答案为:或.13、【解析】算出弦心距后可计算弦长【详解】圆的标准方程为:,圆心到直线的距离为,所以,填【点睛】圆中弦长问题,应利用垂径定理构建直角三角形,其中弦心距可利用点到直线的距离公式来计算14、【解析】由题意,利用复合函数的单调性,对数函数、二次函数的性质,求得的范围【详解】解:函数在上单调递增,函数在上单调递增,且,,解得,即,故答案:15、,关于的方程无实数解【解析】直接利用特称命题的否定为全称命题求解即可.【详解】因为特称命题的否定为全称命题,否定特称命题是,既要否定结论,又要改变量词,所以命题“,使关于的方程有实数解”的否定为:“,关于的方程无实数解”.故答案为:,关于的方程无实数解16、8100【解析】设小矩形的高为,把面积用表示出来,再根据二次函数的性质求得最大值【详解】解:设每个小矩形的高为am,则长为,记面积为则当时,所围矩形面积最大值为故答案8100【点睛】本题考查函数的应用,解题关键是寻找一个变量,把面积表示为此变量的函数,再根据函数的知识求得最值.本题属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)是奇函数,是偶函数.(2)【解析】(1)计算,可得证(2)将f(x)代入(1)中表达式化简即可求得试题解析:(1)∵的定义域为,∴和的定义域都为.∵,∴.∴是奇函数,∵,∴,∴是偶函数.(2)∵,由(1)得,.∵,∴.点睛:抽象函数的奇偶性证明,先看定义域是否关于远点对称,然后根据奇偶函数的等式性质进行计算便可判断出奇偶性,计算时要注意符号的变化.18、证明过程详见解析【解析】(Ⅰ)证明AF⊥平面EFDC,得出AF⊥CD;再由勾股定理证明FC⊥CD,即可证明CD⊥平面ACF,平面ACD⊥平面ACF;(Ⅱ)取DF的中点Q,连接QE、QP,证明BPQE四点共面,再证明CD∥EQ,从而证明CD∥平面EBPQ,即为CD∥平面BPE【详解】(Ⅰ)由题意知,四边形ABEF是正方形,∴AF⊥EF,又平面ABEF⊥平面EFDC,∴AF⊥平面EFDC,∴AF⊥CD;又FD=4,FC=AB=2,CD=AB=2,∴FD2=FC2+CD2,∴FC⊥CD;又FC∩AF=F,∴CD⊥平面ACF;又CD⊂平面ACD,∴平面ACD⊥平面ACF;(Ⅱ)如图所示,取DF的中点Q,连接QE、QP,则QP∥AF,又AF∥BE,∴PQ∥BF,∴BPQE四点共面;又EC=2,QD=DF=2,且DF∥EC,∴QD与EC平行且相等,∴QECD为平行四边形,∴CD∥EQ,又EQ⊂平面EBPQ,CD⊄平面EBPQ,∴CD∥平面EBPQ,即CD∥平面BPE【点睛】本题主要考查直线和平面平行与垂直的判定应用问题,也考查了平面与平面的垂直应用问题,是中档题19、(1).(2).【解析】分析:(1)先根据求出k的值,再利用平行线间的距离公式求与的距离.(2)先根据求出k的值,再解方程组得与的交点的坐标.详解:(1)若,则由,即,解得或.当时,直线:,直线:,两直线重合,不符合,故舍去;当时,直线:,直线:,所以.(2)若,则由,得.所以两直线方程为:,:,联立方程组,解得,所以与的交点的坐标为.点睛:(1)本题主要考查直线的位置关系和距离的计算,意在考查学生对这些知识的掌握水平和计算能力.(2)直线与直线平行,则且两直线不重合.直线与直线垂直,则.20、(1)证明见解析(2)证明见解析【解析】(1)利用三角函数的和差公式,分别将两边化简后即可;(2)利用和2倍角公式构造出齐次式,再同时除以即可证明.【小问1详解】左边===右边===左边=右边,所以原等式得证.【小问2详解】故原式得证.21、⑴见解析;⑵见解析.【解析】(1)要证明线面平行,转证线线平行,在△AB1C中,DE为中位线,易得;(2)要证线线垂直,转
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 英语-河南金太阳2024-2025学年高二上学期第二次月考
- 加强学校实验室的安全教育
- 2025年高性能覆铜箔板原纸项目建议书
- 项目落地执行综合解决方案手册
- 大学生夏季安全教育
- 影视行业拍摄安全须知
- 格林童话中的教育意义与价值分析
- 课本里的历史人物读后感
- 景观仿木护栏安装施工方案
- 山东畜牧养殖温室施工方案
- 期末考试成绩分析报告课件
- 儿童哮喘的防治与治疗
- 新时代中国特色社会主义理论与实践2024版研究生教材课件全集6章
- 学校安全教师培训
- 《由宋城集团的成功》课件
- (2024)湖北省公务员考试《行测》真题及答案解析
- 信息经济学 课件(1至6章)
- 金融警示教育案例
- 中小学校食品安全与膳食经费管理工作指引
- 海迈工程量清单计价软件使用说明书-20220226100603
- 2024落实意识形态责任清单及风险点台账
评论
0/150
提交评论