版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市八中2025届高一数学第一学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,,则的零点所在的区间是A. B.C. D.2.已知向量,,则与的夹角为A. B.C. D.3.在特定条件下,篮球赛中进攻球员投球后,篮球的运行轨迹是开口向下的抛物线的一部分.“盖帽”是一种常见的防守手段,防守队员在篮球上升阶段将球拦截即为“盖帽”,而防守队员在篮球下降阶段将球拦截则属“违规”.对于某次投篮而言,如果忽略其他因素的影响,篮球处于上升阶段的水平距离越长,则被“盖帽”的可能性越大.收集几次篮球比赛的数据之后,某球员投篮可以简化为下述数学模型:如图所示,该球员的投篮出手点为P,篮框中心点为Q,他可以选择让篮球在运行途中经过A,B,C,D四个点中的某一点并命中Q,忽略其他因素的影响,那么被“盖帽”的可能性最大的线路是()A.P→A→Q B.P→B→QC.P→C→Q D.P→D→Q4.已知函数对任意都有,则等于A.2或0 B.-2或0C.0 D.-2或25.函数的单调递减区间为()A. B.C. D.6.已知三棱锥的三条棱,,长分别是3、4、5,三条棱,,两两垂直,且该棱锥4个顶点都在同一球面上,则这个球的表面积是A B.C. D.都不对7.函数f(x)=-4x+2x+1的值域是()A. B.C. D.8.已知偶函数的定义域为,当时,,若,则的解集为()A. B.C. D.9.函数,的值域为()A. B.C. D.10.已知角的顶点在原点,始边与轴正半轴重合,终边上有一点,,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11._____12.若,则的最小值是___________,此时___________.13.放射性物质镭的某种同位素,每经过一年剩下的质量是原来的.若剩下的质量不足原来的一半,则至少需要(填整数)____年.(参考数据:,)14.已知函数的零点依次为a,b,c,则=________15.每一个声音都是由纯音合成的,纯音的数学模型是函数.若的部分图象如图所示,则的解析式为________.16.方程的解在内,则的取值范围是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.提高隧道的车辆通行能力可改善附近路段高峰期间的交通状况.在一般情况下,隧道内的车流速度(单位:千米/小时)和车流密度(单位:辆/千米)满足关系式:.研究表明:当隧道内的车流密度达到辆/千米时造成堵塞,此时车流速度是千米/小时.(1)若车流速度不小于千米/小时,求车流密度的取值范围;(2)隧道内的车流量(单位时间内通过隧道的车辆数,单位:辆/小时)满足,求隧道内车流量的最大值(精确到辆/小时),并指出当车流量最大时的车流密度.18.已知.(1)若为第四象限角且,求的值;(2)令函数,,求函数的递增区间.19.(1)计算:(2)若,,求的值.20.已知.(1)化简;(2)若是第三象限角,且,求的值.21.已知函数,只能同时满足下列三个条件中的两个:①的解集为;②;③最小值为(1)请写出这两个条件的序号,求的解析式;(2)求关于的不等式的解集.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由题意结合零点存在定理确定的零点所在的区间即可.【详解】由题意可知函数在上单调递减,且函数为连续函数,注意到,,,,结合函数零点存在定理可得的零点所在的区间是.本题选择C选项.【点睛】应用函数零点存在定理需要注意:一是严格把握零点存在性定理的条件;二是连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分条件,而不是必要条件;三是函数f(x)在(a,b)上单调且f(a)f(b)<0,则f(x)在(a,b)上只有一个零点.2、C【解析】利用夹角公式进行计算【详解】由条件可知,,,所以,故与的夹角为故选【点睛】本题考查了运用平面向量数量积运算求解向量夹角问题,熟记公式准确计算是关键,属于基础题3、B【解析】定性分析即可得到答案【详解】B、D两点,横坐标相同,而D点的纵坐标大于B点的纵坐标,显然,B点上升阶段的水平距离长;A、B两点,纵坐标相同,而A点的横坐标小于B点的横坐标,等经过A点的篮球运行到与B点横坐标相同时,显然在B点上方,故B点上升阶段的水平距离长;同理可知C点路线优于A点路线,综上:P→B→Q是被“盖帽”的可能性最大的线路.故选:B4、D【解析】分析:由条件可得,函数f(x)的图象关于直线x=对称,故f()等于函数的最值,从而得出结论详解:由题意可得,函数f(x)的图象关于直线x=对称,故f()=±2,故答案为±2点睛:本题考查了函数f(x)=Asin(ωx+φ)的图象与性质的应用问题,是基础题目.一般函数的对称轴为a,函数的对称中心为(a,0).5、A【解析】解不等式,,即可得答案.【详解】解:函数,由,,得,,所以函数的单调递减区间为,故选:A.6、B【解析】长方体的一个顶点上的三条棱分别为,且它的八个顶点都在同一个球面上,则长方体的对角线就是球的直径,长方体的对角线为球的半径为则这个球的表面积为故选点睛:本题考查的是球的体积和表面积以及球内接多面体的知识点.由题意长方体的外接球的直径就是长方体的对角线,求出长方体的对角线,就是求出球的直径,然后求出球的表面积即可7、A【解析】令t=2x(t>0),则原函数化为g(t)=-t2+t+1(t>0),然后利用二次函数求值域【详解】令t=2x(t>0),则原函数化为g(t)=-t2+t+1(t>0),其对称轴方程为t=,∴当t=时,g(t)有最大值为∴函数f(x)=-4x+2x+1的值域是故选A【点睛】本题考查利用换元法及二次函数求值域,是基础题8、D【解析】先由条件求出参数,得到在上的单调性,结合和函数为偶函数进行求解即可.【详解】因为为偶函数,所以,解得.在上单调递减,且.因为,所以,解得或.故选:D9、A【解析】首先由的取值范围求出的取值范围,再根据正切函数的性质计算可得;【详解】解:因为,所以因为在上单调递增,所以即故选:A10、B【解析】由三角函数定义列式,计算,再由所给条件判断得解.【详解】由题意知,故,又,∴.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用根式性质与对数运算进行化简.【详解】,故答案为:612、①.1②.0【解析】利用基本不等式求解.【详解】因为,所以,当且仅当,即时,等号成立,所以其最小值是1,此时0,故答案为:1,013、【解析】设所需的年数为,由已知条件可得,解该不等式即可得结论.【详解】设所需的年数为,由已知条件可得,则.因此,至少需要年.故答案为:.14、【解析】根据对称性得出,再由得出答案.【详解】因为函数与的图象关于对称,函数的图象关于对称,所以,又,所以.故答案为:15、【解析】结合正弦函数的性质确定参数值.【详解】由图可知,最小正周期,所以,所以.故答案为:.【点睛】本题考查由三角函数图象确定其解析式,掌握正弦函数的图象与性质是解题关键.16、【解析】先令,按照单调性求出函数的值域,写出的取值范围即可.【详解】令,显然该函数增函数,,值域为,故.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)最大值约为3250辆/小时,车流密度约为87辆/千米.【解析】(1)把代入已知式求得,解不等式可得的范围(2)由(1)求得函数,分别利用函数的单调性和基本不等式分段求得最大值,比较可得【详解】解:(1)由题意知当(辆/千米)时,(千米/小时),代入得,解得所以当时,,符合题意;当时,令,解得,所以综上,答:若车流速度不小于40千米/小时,则车流密度的取值范围是.(2)由题意得,当时,为增函数,所以,等号当且仅当成立;当时,即,等号当且仅当,即成立.综上,的最大值约为3250,此时约为87.答:隧道内车流量的最大值约为3250辆/小时,此时车流密度约为87辆/千米.【点睛】关键点点睛:本题考查函数模型的应用,对于已经给出函数模型的问题,关键是直接利用函数模型列出方程、不等式或利用函数性质求解18、(1);(2).【解析】(1)先利用诱导公式化简,再利用同角三角函数的基本关系求解,代入即得结果;(2)利用两角和的正弦公式的逆应用化简函数,再利用整体代入法,结合范围得到递增区间即可.【详解】解:(1),,,为第四象限角,;(2)由(1)知,故,令,得,又,函数的递增区间为.19、(1);(2).【解析】(1)利用分数指数幂运算法则分别对每一项进行化简,然后合并求解;(2)先利用已知条件,把m、n表示出来,代入要求解的式子中,利用对数的运算法则化简即可.【详解】(1)原式(2)因为,,所以,,所以20、(1);(2).【解析】(1)根据诱导公式化简即可得答案;(2)根据诱导公式,结合已知条件得,再根据同角三角函数关系求值即可.【详解】(1).(2)∵,∴,又是第三象限角,∴,故.【点睛】本题考查诱导公式化简求值,考查运算能力,基础题.21、(1)(2)答案见解析【解析】(1)若选①②,则的解集不可能为;若选②③,,开口向下,则无最小值.只能是选①③,由函数的解集为可知,-1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年智能化微型农业设备开发项目可行性研究报告
- 2025年虚拟现实在旅游行业应用可行性研究报告
- 2025年赛事经济开发项目可行性研究报告
- 2025年传统产业智能化转型可行性研究报告
- 2025年国际贸易电子商务平台构建项目可行性研究报告
- 人才入股协议书
- 供应加工协议书
- 球馆管理合同范本
- 兴县2024山西吕梁兴县事业单位校园招聘9人笔试历年参考题库典型考点附带答案详解(3卷合一)
- 妇产科护士笔试考试题含答案
- 2025广西公需科目培训考试答案(90分)一区两地一园一通道建设人工智能时代的机遇与挑战
- 酸洗钝化工安全教育培训手册
- 汽车发动机测试题(含答案)
- IPC6012DA中英文版刚性印制板的鉴定及性能规范汽车要求附件
- 消除母婴三病传播培训课件
- 学校餐费退费管理制度
- T/CUPTA 010-2022共享(电)单车停放规范
- 设备修理工培训体系
- 《社区营养健康》课件
- DB33T 2455-2022 森林康养建设规范
- 北师大版数学三年级上册课件 乘法 乘火车-课件01
评论
0/150
提交评论