北京市大兴区2025届高一数学第一学期期末监测模拟试题含解析_第1页
北京市大兴区2025届高一数学第一学期期末监测模拟试题含解析_第2页
北京市大兴区2025届高一数学第一学期期末监测模拟试题含解析_第3页
北京市大兴区2025届高一数学第一学期期末监测模拟试题含解析_第4页
北京市大兴区2025届高一数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市大兴区2025届高一数学第一学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则()A.{-1} B.{0,1}C.{-1,2,3} D.{-1,0,1,3}2.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n②若α⊥γ,β⊥γ,则α∥β③若α⊥β,m⊂α,则m⊥β④若α∥β,β∥γ,m⊥α,则m⊥γ其中正确命题的序号是()A.和 B.和C.和 D.和3.函数的图象的横坐标和纵坐标同时扩大为原来的3倍,再将图象向右平移3个单位长度,所得图象的函数解析式为A. B.C. D.4.箱子中放有一双红色和一双黑色的袜子,现从箱子中同时取出两只袜子,则取出的两只袜子正好可以配成一双的概率为()A. B.C. D.5.已知函数的定义域是且满足如果对于,都有不等式的解集为A. B.C. D.6.体育老师记录了班上10名同学1分钟内的跳绳次数,得到如下数据:88,94,96,98,98,99,100,101,101,116.这组数据的60%分位数是()A.98 B.99C.99.5 D.1007.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()A. B.C. D.8.已知当时,函数取最大值,则函数图象的一条对称轴为A. B.C. D.9.下列几何体中是棱柱的有()A.1个 B.2个C.3个 D.4个10.若“”是假命题,则实数m的最小值为()A.1 B.-C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.大西洋鲑鱼每年都要逆流而上游回产地产卵,研究鱼的科学家发现大西洋鲑鱼的游速(单位:)可以表示为,其中表示鱼的耗氧量的单位数.当一条大西洋鲑鱼的耗氧量的单位数是其静止时耗氧量的单位数的倍时,它的游速是________12.在平面直角坐标系中,已知为坐标原点,,,,若动点,则的最大值为______.13.能说明命题“如果函数与的对应关系和值域都相同,那么函数和是同一函数”为假命题的一组函数可以是________________,________________14.已知函数是定义在R上的奇函数,且,若对任意的,当时,都有成立,则不等式的解集为_____15.已知是定义在上的奇函数,当时,,函数如果对,,使得,则实数m的取值范围为______16.已知函数,则不等式的解集为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,,设函数Ⅰ求函数的最小正周期和单调递增区间;Ⅱ求函数在区间的最大值和最小值18.已知为奇函数,为偶函数,且.(1)求及的解析式及定义域;(2)如果函数,若函数有两个零点,求实数的取值范围.19.已知函数(1)利用函数单调性的定义证明是单调递增函数;(2)若对任意,恒成立,求实数取值范围20.已知角终边上一点.(1)求的值;(2)求的值.21.已知函数(1)若函数,且为偶函数,求实数的值;(2)若,,且的值域为,求的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由交集与补集的定义即可求解.【详解】解:因为集合A={0,1,2},B={-1,0,1},所以,又全集U={-1,0,1,2,3},所以,故选:C.2、B【解析】根据空间直线和平面平行、垂直的性质分别进行判断即可【详解】①若m⊥α,n∥α,则m⊥n成立,故①正确,②若α⊥γ,β⊥γ,则α∥β不成立,两个平面没有关系,故②错误③若α⊥β,m⊂α,则m⊥β不成立,可能m与β相交,故③错误,④若α∥β,β∥γ,m⊥α,则m⊥γ,成立,故④正确,故正确是①④,故选B【点睛】本题主要考查命题的真假判断,涉及空间直线和平面平行和垂直的判定和性质,考查学生的空间想象能力3、D【解析】函数的图像的横坐标和纵坐标同时扩大为原来的3倍,所得图像的解析式为,再向右平移3个单位长度,所得图像的解析式为,选D.4、B【解析】先求出试验的样本空间,再求有利事件个数,最后用概率公式计算即可.【详解】两只红色袜子分别设为,,两只黑色袜子分别设为,,这个试验的样本空间可记为,共包含6个样本点,记为“取出的两只袜子正好可以配成一双”,则,包含的样本点个数为2,所以.故选:B5、D【解析】令x=,y=1,则有f()=f()+f(1),故f(1)=0;令x=,y=2,则有f(1)=f()+f(2),解得,f(2)=﹣1,令x=y=2,则有f(4)=f(2)+f(2)=﹣2;∵对于0<x<y,都有f(x)>f(y),∴函数f(x)是定义在(0,+∞)上的减函数,故f(﹣x)+f(3﹣x)≥﹣2可化为f(﹣x(3﹣x))≥f(4),故,解得,﹣1≤x<0.∴不等式的解集为故选D点睛:本题重点考查了抽象函数的性质及应用,的原型函数为的原型函数为,.6、C【解析】根据分位数的定义即可求得答案.【详解】这组数据的60%分位数是.7、C【解析】先还原几何体为一直四棱柱,再根据柱体体积公式求结果.【详解】根据三视图可得几何体为一个直四棱柱,高为,底面为直角梯形,上下底分别为、,梯形的高为,因此几何体的体积为,选C.【点睛】先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.8、A【解析】由最值确定参数a,再根据正弦函数性质确定对称轴【详解】由题意得因此当时,,选A.【点睛】本题考查三角函数最值与对称轴,考查基本分析求解能力,属基础题.9、C【解析】根据棱柱的定义进行判断即可【详解】棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱,观察图形满足棱柱概念的几何体有:①③⑤,共三个故选:C【点睛】本题主要考查棱柱的概念,属于简单题.10、C【解析】根据题意可得“”是真命题,故只要即可,求出的最大值,即可求出的范围,从而可得出答案.【详解】解:因为“”是假命题,所以其否定“”是真命题,故只要即可,因为的最大值为,所以,解得,所以实数m的最小值为.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设大西洋鲑鱼静止时的耗氧量为,计算出的值,再将代入,即可得解.【详解】设大西洋鲑鱼静止时的耗氧量为,则,可得,将代入可得.故答案为:.12、【解析】设动点,由题意得动点轨迹方程为则由其几何意义得表示圆上的点到的距离,故点睛:本题主要考查了平面向量的线性运算及其运用,综合了圆上点与定点之间的距离最大值,先给出动点的轨迹方程,再表示出向量的坐标结果,依据其几何意义计算求得结果,本题方法不唯一,还可以直接计算含有三角函数的最值13、①.②.(答案不唯一);【解析】根据所学函数,取特例即可.【详解】根据所学过过的函数,可取,,函数的对应法则相同,值域都为,但函数定义域不同,是不同的函数,故命题为假.故答案为:;14、;【解析】令,则为偶函数,且,当时,为减函数所以当时,;当时,;因此当时,;当时,,即不等式的解集为点睛:利用函数性质解抽象函数不等式,实质是利用对应函数单调性,而对应函数需要构造.15、【解析】先求出时,,,然后解不等式,即可求解,得到答案【详解】由题意,可知时,为增函数,所以,又是上的奇函数,所以时,,又由在上的最大值为,所以,,使得,所以.故答案为【点睛】本题主要考查了函数的奇偶性的判定与应用,以及函数的最值的应用,其中解答中转化为是解答的关键,着重考查了转化思想,推理与运算能力,属于基础题.16、【解析】分x小于等于0和x大于0两种情况根据分段函数分别得到f(x)的解析式,把得到的f(x)的解析式分别代入不等式得到两个一元二次不等式,分别求出各自的解集,求出两解集的并集即可得到原不等式的解集【详解】解:当x≤0时,f(x)=x+2,代入不等式得:x+2≥x2,即(x-2)(x+1)≤0,解得-1≤x≤2,所以原不等式的解集为[-1,0];当x>0时,f(x)=-x+2,代入不等式得:-x+2≥x2,即(x+2)(x-1)≤0,解得-2≤x≤1,所以原不等式的解集为[0,1],综上原不等式的解集为[-1,1].故答案为[-1,1]【点睛】此题考查了不等式的解法,考查了转化思想和分类讨论的思想,是一道基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)最小正周期是,增区间为,;(Ⅱ)最大值为5,最小值为4【解析】Ⅰ根据向量数量积,利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数化为,利用正弦函数的周期公式可得函数的周期,利用正弦函数的单调性解不等式,可得到函数的递增区间;Ⅱ根据的范围得的范围,结合正弦函数的单调性可得的最大最小值【详解】Ⅰ,,,,由,得,所以的增区间为,;Ⅱ,,可得,的最大值为5,最小值为4【点睛】以三角形和平面向量为载体,三角恒等变换为手段,三角函数的图象与性质为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公式,一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.18、(1),(2)【解析】(1)根据是奇函数,是偶函数,结合,以取代入上式得到,联立求解;(2)易得,,设,转化为,,根据时,与有两个交点,转化为函数,在有一个零点求解.【小问1详解】解:因为是奇函数,是偶函数,所以,,∵,①∴令取代入上式得,即,②联立①②可得,,【小问2详解】,,,可得,∴,.设,∴,,∵当时,与有两个交点,要使函数有两个零点,即使得函数,在有一个零点,(时,只有一个零点)即方程在内只有一个实根,∵,令,则使即可,∴或.∴的取值范围.19、(1)证明见解析(2)【解析】(1)利用单调性的定义,取值、作差、整理、定号、得结论,即可得证.(2)令,根据x的范围,可得t的范围,原式等价为,,只需即可,分别讨论、和三种情况,根据二次函数的性质,计算求值,分析即可得答案.【小问1详解】由已知可得的定义域为,任取,且,则,因为,,,所以,即,所以在上是单调递增函数【小问2详解】,令,则当时,,所以令,,则只需当,即时,在上单调递增,所以,解得,与矛盾,舍去;当,即时,在上单调递减,在上单调递增,所以,解得;当即时,在上单调递减,所以,解得,与矛盾,舍去综上,实数的取值范围是20、(1)4;(2).【解析】(1)根据三角函数的定义可求出,然后分子分母同时除以,将弦化切,即可求出结果;(2)根据三角函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论